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This report is an overview of the current state of the science relative to environmental endocrine
disruption in humans, laboratory testing, and wildlife species. Background information is presented
on the field of endocrinology, the nature of hormones, and potential sites for endocrine disruption,
with specific examples of chemicals affecting these sites. An attempt is made to present
objectively the issue of endocrine disruption, consider working hypotheses, offer opposing
viewpoints, analyze the available information, and provide a reasonable assessment of the
problem. Emphasis is placed on disruption of central nervous system-pituitary integration of
hormonal and sexual behavioral activity, female and male reproductive system development and
function, and thyroid function. In addition, the potential role of environmental endocrine disruption
in the induction of breast, testicular, and prostate cancers, as well as endometriosis, is evaluated.
The interrelationship of the endocrine and immune system is documented. With respect to
endocrine-related ecological effects, specific case examples from the peer-reviewed literature of
marine invertebrates and representatives of the five classes of vertebrates are presented and
discussed. The report identifies some data gaps in our understanding of the environmental
endocrine disruption issue and recommends a few research needs. Finally, the report states the
U.S. Environmental Protection Agency Science Policy Council's interim position on endocrine
disruption and lists some of the ongoing activities to deal with this matter. Environ Health
Perspect 1 06(Suppl 1: 11-56 (1998). http://ehpnetl.niehs.nih.gov/docs/1998/Suppl-1/
1 1-56crisp/abstract.html
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Background
The U.S. Environmental Protection Agency this consensus is incorporated into appro-
(U.S. EPA) Risk Assessment Forum was priate risk assessment guidance. To accom-
established to promote scientific consensus plish this, the Risk Assessment Forum
on risk assessment issues and to ensure that assembles experts throughout the U.S. EPA
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in a formal process to study and report on
these issues from an Agencywide perspec-
tive. For major risk assessment activities,
the Risk Assessment Forum has established
technical panels to conduct scientific
reviews and analyses. Members are chosen
to assure that necessary technical expertise
is available.

Recently, a number of ecologists,
epidemiologists, endocrinologists, and toxi-
cologists have called attention to the poten-
tial hazardous effects that estrogenlike and
antiandrogenic chemicals and certain other
environmental chemicals may have on
human health and ecological well-being. A
hypothesis has been proposed that certain
chemicals may disrupt the endocrine system.
These chemicals have been called endocrine
disruptors because they are thought to
mimic natural hormones, inhibit the action
of hormones, or alter the normal regulatory
function of the immune, nervous, and
endocrine systems. Possible human health
end points affected by these agents include
breast cancer and endometriosis in women,
testicular and prostate cancers in men,
abnormal sexual development, reduced male
fertility, alteration in pituitary and thyroid
gland functions, immune suppression, and
neurobehavioral effects.

In addition to potential human health
effects, reports have accumulated that
many chemicals released into the environ-
ment can disrupt normal endocrine func-
tion in a variety of aquatic life and wildlife.
Some of the deleterious effects observed in
animals have been attributed to persistent
organic chemicals such as polychlorinated
biphenyls (PCBs), 1,1,1-trichloro-2,2-
bis(p-chlorophenyl)ethane (DDT), dioxin,
and some pesticides. Adverse effects
include abnormal thyroid function and
development in fish and birds; decreased
fertility in shellfish, fish, birds, and mam-
mals; decreased hatching success in fish,
birds, and reptiles; demasculinization and
feminization of fish, birds, reptiles, and
mammals; defeminization and masculiniza-
tion of gastropods, fish, and birds;
decreased offspring survival; and alteration
of immune and behavioral function in
birds and mammals. It has been proposed
that the above adverse effects may be due
to an endocrine-disrupting mechanism.

The U.S. EPA has followed closely the
recent reports dealing with the potential
effects of environmental endocrine dis-
ruptors on human health and ecological
well-being. The U.S. EPA's Science Policy
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Council requested that the Risk Assessment
Forum prepare a technical panel report that
would provide an overview of the current
state of the science relative to endocrine dis-
ruption. It is intended that this report serve
as an interim assessment to inform Agency
risk assessors of the major findings and
uncertainties and to serve as a basis for a
Science Policy Council position statement.

Science Policy Council's
Interim Position
The U.S. EPA is aware of and concerned
about information indicating the possibility
of adverse impacts on human health and
the environment associated with exposure
to endocrine disruptors. At the present
time, however, there is little knowledge of
or agreement on the extent of the problem.
Based on the current state of the science,
the Agency does not consider endocrine
disruption to be an adverse end point per
se, but rather to be a mode or mechanism
of action potentially leading to other out-
comes, for example, carcinogenic, repro-
ductive, or developmental effects, routinely
considered in reaching regulatory decisions.
Evidence of endocrine disruption alone can
influence the setting of priorities for further
testing, and the assessment of the results of
this testing could lead to regulatory action
if adverse effects are shown to occur. This
position could change as additional data
become available on the mechanisms and
role of endocrine disruptors.

The Agency thinks that identification of
environmental agents that cause adverse
effects as a result of endocrine disruption, as
well as enhancement of our understanding
of how these agents exert their effects, will
improve the U.S. EPA's ability to reduce or
prevent risks, particularly to children and
vulnerable ecosystems. These considerations
become increasingly important as we
expand our risk assessment activities to
incorporate a wider range of susceptible
populations, multiple pathways of exposure,
and mixtures of chemical substances.

Further research and testing are needed
to address existing gaps in knowledge con-
cerning the consequences of endocrine dis-
ruption. Such knowledge will reduce
uncertainties in the assessment of hazard,
exposure, and risk. The Agency is working
with other federal agencies, as well as acad-
emic, international, and industry groups to
expand the body of defensible and credible
information and data on this issue. Several
major activities are under way that address
these needs. Examples of these activities are
listed below.

* The U.S. EPA is co-sponsoring the
detailed review and interpretation of the
existing literature on endocrine disrup-
tion currently under way at the
National Academy of Sciences' National
Research Council. This study is
expected to be completed in 1998.

* The U.S. EPA has developed and is
implementing a multiyear endocrine
disruptors research strategy.

* The U.S. EPA chairs the work group
convened by the President's Office of
Science and Technology Policy charged
with the task to document and then
coordinate research on endocrine dis-
ruptors across the federal government.
Also, this activity serves as the basis for
pursuing coordination of research on
an international level.

* Under the mandates of the Food Quality
Protection Act (FQPA) of 1996 and the
1996 amendments to the Safe Drinking
Water Act, the U.S. EPA has established
an advisory committee to assist in devel-
oping a screening and testing strategy for
evaluating chemicals for their potential to
cause effects via endocrine disruption.
The FQPA requires that the strategy be
developed and peer reviewed within two
years, implemented during the third
year, and that a progress report be sub-
mitted to the Congress by the end of the
fourth year.
The U.S. EPA continues to stay abreast

of scientific developments and will take
regulatory action whenever sound scientific
information and prudent public policy dic-
tate. We are currendy committed to pursu-
ing domestic and international opportunities
for exposure/risk reduction related to
endocrine disruptors.

Executive Summary
Purpose ofDocument and
Areas Considered

This report is an overview of the current
state of the science relative to environmental
endocrine disruption in humans, laboratory
testing, and wildlife species. It is intended to
serve as an interim assessment and analysis
of the environmental endocrine disruption
hypothesis until a more extensive explo-
ration of environmental endocrine disrup-
tion can be completed by the National
Academy of Sciences (NAS). This report is
not intended to address all of the endocrine
glands that might be disrupted by environ-
mental insult. Furthermore, it does not
address high occupational or accidental
human exposures. Rather, this document

focuses on those reports of adverse human
and ecological effects in which a common
theme of endocrine system disruption by
environmental agents has been hypothesized
or demonstrated.

An environmental endocrine disruptor
is defined as an exogenous agent that inter-
feres with the synthesis, secretion, trans-
port, binding, action, or elimination of
natural hormones in the body that are
responsible for the maintenance of home-
ostasis, reproduction, development, and/or
behavior. Background information is pre-
sented on the field of endocrinology, the
nature of hormones, and potential sites for
endocrine disruption, with specific exam-
ples of chemicals affecting these sites. An
attempt is made to present objectively the
issue of endocrine disruption, consider
working hypotheses, offer opposing view-
points, analyze the available information,
and provide a reasonable assessment of the
problem. Emphasis is placed on disruption
of central nervous system-pituitary integra-
tion of hormonal and sexual behavioral
activity, female and male reproductive sys-
tem development and function, and thy-
roid function. In addition, the potential
role of environmental endocrine disruption
in the induction of breast, testicular, and
prostate cancers, as well as endometriosis,
is evaluated. The interrelationship of the
endocrine and immune system is docu-
mented. Finally, some data gaps in our
understanding of the environmental
endocrine disruption issue are identified
and a few future research needs are recom-
mended. A research strategy dealing with
this issue is being developed within the
U.S. EPA.

With respect to endocrine-related
ecological effects, specific examples in the
peer-reviewed literature are presented and
discussed. For each topic area, data gaps
and areas of uncertainty are discussed, con-
clusions are drawn, and general research
needs are suggested.

General Background
Nature ofHormones. Hormones are
natural, secretory products of endocrine
glands (ductless glands that discharge
directly into the bloodstream). Hormones
travel in the blood in very small concentra-
tions and bind to specific cell sites called
receptors in distant target tissues and
organs, where they exert their effects on
development, growth, and reproduction in
addition to other bodily functions.

Role of the Endocrine System. The
endocrine system is one of at least three
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important integrating and regulatory
systems in humans and other animals. The
other two are the nervous and immune
systems. Hormones influence important
regulatory, developmental, growth, and
homeostatic mechanisms, such as repro-
ductive structure and function; mainte-
nance of normal levels of glucose and ions
in blood; control of general body metabo-
lism; blood pressure; and other glandular,
muscle, and nervous system functions.
Some of the major endocrine glands
include the pituitary, thyroid, pancreas,
adrenal, and the male and female gonads
(testes and ovaries).

Technical Panel's Major Finding
Human Health Effects. TYPES OF
EFFECTS. Female Reproductive System. A
variety of chemicals have been shown to
disrupt female reproductive function
throughout the lifespan in laboratory ani-
mals and humans (e.g., diethylstilbestrol).
These effects include the disruption of nor-
mal sexual differentiation, ovarian function
(i.e., follicular growth, ovulation, corpus
luteum formation and maintenance), fertil-
ization, implantation, and pregnancy. Only
a few agents are associated with direct
interference with the endocrine reproduc-
tive axis. Examples are those with estro-
genic activity or the potential to interact
with the aryl hydrocarbon (Ah) receptor.
Exposure to toxicants during development
is of particular concern because many feed-
back mechanisms functioning in the adult
are absent and adverse effects may be noted
at doses lower than those observed in the
adult. Although there are a limited number
of endocrine-disrupting studies evaluating
reproductive function in the female, it is
important that each stage of the life cycle
be examined thoroughly. Appropriate, vali-
dated in vitro and in vivo tests to determine
the endocrine-disrupting potential of
agents with clearly defined end points are
needed. Additionally, studies that include
multigenerational exposure should be con-
ducted, followed by time of exposure and
dose level required for effect.

Endometriosis is a painful reproductive
and immunologic disease of women
characterized by aberrant location of uterine
endometrial cells. It affects approximately 5
million women in the United States from
15 to 45 years of age and often causes
infertility. The etiology of this disease is
unknown. In a single study with a small
number of animals, research has suggested a
link between dioxin exposure and the devel-
opment of endometriosis in rhesus monkeys.

The severity of this lesion was dependent
on the dose administered. Recently, a small
pilot study to test the hypothesis that
serum dioxin concentrations have an asso-
ciation with human endometriosis has
been reported. No statistically significant
correlations between disease severity and
serum levels of halogenated aromatic
hydrocarbons were found. These pre-
liminary data, admittedly for a limited
population, suggest that serum dioxin con-
centrations may not be related to human
endometriosis. There is a need to develop
and validate nonprimate laboratory animal
endometriosis models for testing chemicals
and xenobiotics. Several novel models for
predicting potential causative agents of
endometriosis are available.

Human breast cancer is a major health
problem in the United States. Although
considerable information is available on
risk factors for human breast cancer, the
mechanisms of mammary gland carcino-
genesis and the precise role played by
chemical carcinogens, physical and biologi-
cal agents, varied lifestyles, genetic suscep-
tibility, and developmental exposures have
yet to be elucidated. It has been hypothe-
sized that exposure to organochlorines,
some pesticides, and/or polyaromatic
hydrocarbons (PAHs) might play a role in
the etiology of mammary gland neoplasms
via an endocrine disruption pathway, per-
haps via an estrogen-mimetic route or
alternative estrogen pathways. With respect
to the possible role of hormone disruption
by chemicals in the occurrence of breast
cancer, there is a lack of sufficient evidence
implicating organochlorines in this disease.
Clearly, there is a need for research on the
etiology of breast cancer. With respect to
chemically induced breast cancer, there is a
need to develop and validate both in vitro
short-term tests and in vivo animal testing
models for predicting human breast cancer
risk following chemical insult. Finally,
given the wealth of human epidemiologic
data on human breast cancer but limited
specific agent exposure data, it is not possi-
ble to assign a specific chemical or physical
cause and effect at this time. Further epi-
demiologic investigations to address the
issue are needed, as well as complementary
mechanistic studies.

Male Reproductive System. Convincing
evidence exists in rodents that exposure to
chemicals that have estrogenic activity,
reduce androgen levels, or otherwise inter-
fere with the action of androgen during
development can cause male reproductive
system abnormalities that include reduced

sperm production capability and reproduc-
tive tract abnormalities. Results obtained
from observation of men exposed to
diethylstilbestrol (DES) in utero demon-
strate a limited potential of exogenous
estrogens to disrupt the reproductive sys-
tem during development in human males
compared with that observed in rodents.
Further intense research on the population
exposed to DES might allow stratification
of effects by timing and level of exposure.
Apparently, no increased incidence of
reproductive system cancer has been found
in those men.

Controversy persists as to the allegation
that human sperm production has decreased
over the past 50 years. However, the firm
data indicating an increase in human tes-
ticular cancer, as well as apparent occur-
rence of other plausibly related effects,
support the concept that an adverse influ-
ence has occurred or still exists. Whether
these effects in humans can be attributed to
an endocrine disruption by environmental
chemicals is unknown at present, and
research into the cause(s) is needed. It is
possible that the mechanism by which
estrogenic chemicals impair development
of the male reproductive system is via
antiandrogenic properties rather than or in
addition to activity related to estrogen
receptor activation.

Leydig cell hyperplasia and tumors are
a significant problem in testing with labo-
ratory species. Participants at a workshop
on the topic concluded that human inci-
dence of the tumors is low relative to that
in rodents and that not all modes of induc-
tion in test species are relevant to humans.
However, occurrence of Leydig cell tumors
in test species may be of concern with cer-
tain modes of action if the potential exists
for sufficient exposure.

Testing for endocrine-disrupting
potential of environmental chemicals
should include the ability to detect antian-
drogenic activity in addition to estrogenic
activity. Testing also should be able to
detect alteration in androgen receptor and
Ah receptor function as reflected in
genome expression.

Little is known about the causes of
human prostatic cancer, but age, genetics,
diet, endocrine status, and environmental
risk factors have been proposed. With
respect to the cause(s) of human prostate
cancer, a single retrospective epidemiology
study has established a weak but statisti-
cally significant association between acres
sprayed with herbicides and prostate cancer
deaths. Furthermore, an occupational
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study of coke-oven workers has found an
association between coke-oven emission
and significant excess mortality from cancer
of the prostate. Whether herbicide or pol-
yaromatic hydrocarbon exposure con-
tributes to the increasing incidence of
human adenocarcinoma of the prostate and
whether the mechanism is triggered by an
endocrine disruption remain to be deter-
mined. More research is required before
assigning a specific endocrine disruption (or
any other) mechanism as a specific cause of
human prostate cancer.

Hypothalamus and Pituitary. There are
a number of ways that environmental
agents may alter neuroendocrine function
both during development and in the sexu-
ally mature organism. Exposure during
development may be of particular concern
because many of the feedback functions of
the endocrine system are not operational
during this period, permanent changes in
endocrine function may be induced at lev-
els of exposure to a toxicant that have no
effect in the adult animal, and compounds
that are considered antiestrogenic in the
adult (i.e., tamoxifen, dioxin) may act as
estrogens in the developing organism.
Similarly, exposure to such agents in the
adult can modify the feedback of endoge-
nous hormones as well as behavior (i.e.,
libido, appetite, aggression) of the individ-
ual. Because of the complex role that the
central nervous system plays in regulating
endocrine function, cells within the brain
are potential targets for environmental
chemicals that have no impact on steroid
hormones directly but yet will lead to a dis-
ruption of endocrine function. There is a
substantial need to better characterize the
role of the brain and pituitary when evalu-
ating suspected reproductive toxicants in
both the male and female.

Thyroid. Numerous environmental
agents have been found to alter thyroid
hormone levels (e.g., urea derivatives, poly-
halogenated biphenyls, and chlorinated
dibenzo-p-dioxins). Thyroid hormones are
critical to normal growth and develop-
ment; thus, developmental exposures may
have lasting adverse effects.

STRENGTHS AND WEAKNESSES OF THE
DATA. The observation that humans have
experienced increased incidences of devel-
opmental, reproductive, and carcinogenic
effects, and the formulation of a working
hypothesis that these adverse effects may be
caused by environmental chemicals acting
to disrupt the endocrine system that regu-
lates these processes are supported by
observations of similar effects in aquatic

and wildlife species. In other words, a com-
mon theme runs through both human and
wildlife reports. The hypothesis also is
strengthened by the fact that cancer and
noncancer effects, at least with respect to
published reports, are related in large part
to reproductive structure and function
(e.g., vaginal and breast cancer in women,
testicular and prostatic cancers in men,
endometriosis, cryptorchidism, sperm
counts and quality, and infertility).

In contrast, the hypothesis that the
reported increased incidence of human
cancers and reproductive anomalies and
infertility can be attributed to an endocrine
disruption phenomenon is called into
question by the following. First, secretion
and elimination of hormones are highly
regulated by the body, and mechanisms for
controlling modest fluctuations of hor-
mones are in place via negative feedback
control of hormone concentrations. There-
fore, minor increases of environmental
hormones following dietary absorption and
liver detoxification of these xenobiotics
may be inconsequential in disrupting
endocrine homeostasis. Second, low ambi-
ent concentrations of chemicals along with
low affinity binding of purported xenobi-
otics to target receptors probably are insuf-
ficient to activate an adverse response in
adults. Whether the fetus and the young
are capable of regulating minor changes to
the endocrine milieu is uncertain. Finally,
data are not available for mixtures of chem-
icals that may be able to affect endocrine
function. At the same time, in the case of
environmental estrogens as endocrine dis-
ruptors, it is known that competition for
binding sites by antiestrogens in the envi-
ronment may moderate estrogenic effects
of some chemicals. Clearly, more research
is needed to fill data gaps and remove the
uncertainties from these unknowns.

CONCLUSIONS. With few exceptions
(e.g., DES), a causal relationship between
exposure to a specific environmental agent
and an adverse effect on human health oper-
ating via an endocrine disruption mecha-
nism has not been established. However, in
view of the Agency's concern that certain
persistent chemicals might be responsible
for some of the recently-reported reproduc-
tive, developmental, and carcinogenic effects
operating through an endocrine disruption
mechanism, new epidemiologic and labora-
tory testing studies could be undertaken to
better define the scope of the problem.
Short-term screening studies could be devel-
oped and validated in an effort to elucidate
mechanisms. Biomarkers (indicators) of

exposure could be defined and their con-
centrations related to degree of actual expo-
sure. Studies of absorption, distribution,
metabolism, and elimination are essential
for improving risk assessments by allowing
extrapolation between species and assessing
other routes of exposure. The reader is
advised to refer to the report of the April
1995 endocrine disruptor workshop
recommending specific high-priority
research (1).

Ecologwal Effects. TYPES OF STUDIES. A
number of laboratory and field investiga-
tions have been reported that provide infor-
mation from which the potential effects of
certain chemicals on the normal endocrine
function of invertebrates, fish, reptiles,
birds, and mammals can be evaluated.
Based on these studies, it has been sug-
gested in the literature that both synthetic
and naturally occurring compounds may
have the potential to disrupt reproductive
and developmental events associated with
hormonally mediated processes. In some
cases, compounds have been deliberately
synthesized for their potential to disrupt
endocrine systems. For example, several
classes of insecticides have been developed
to selectively disrupt the endocrine system
of specific insect species without creating
substantial risk to nontarget vertebrates due
to direct toxic effects, although adverse
responses in nontarget arthropods, espe-
cially crustaceans, have been observed.
Certainly in most other instances, suspect
synthetic compounds were either not inten-
tionally designed to have biological activity
or their primary mode of toxic action in a
short-term exposure is not attributed to
effects on the endocrine system. Several
examples, discussed below, illustrate the
range of information currently available for
a wide spectrum of species.
A series of field and laboratory investi-

gations with marine invertebrates suggest
that tributyltin compounds, which are used
as antifouling paints on ships, can have sig-
nificant hormonal effects on some snail
species at sublethal exposure concentra-
tions. Through controlled dose-response
studies, it appears that these compounds
can induce irreversible induction of male
sex characteristics on females (imposex),
which can lead to sterility and reduced
reproductive performance. In turn, field
investigations in numerous locations
around the world suggest this class of com-
pounds may be responsible for localized
reductions in specific snail populations.
The possibility that other mollusks (e.g.,
oysters) could be sensitive to tributyltin
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compounds also raises ecological concerns,
as does the fact that these compounds
bioaccumulate in the food chain, leading
to questions as to whether effects in fish,
wildlife, or humans are possible.
A wide variety of compounds and

environmental settings also have been asso-
ciated with potential reproductive and
developmental anomalies in fish. For exam-
ple, hermaphroditic fish have been observed
in rivers below sewage treatment plants,
and masculinization, altered sexual develop-
ment, and decreased fertility have been
noted for some fish species near pulp and
paper plant discharges. It is unclear from
these studies, however, as to the extent to
which these observations are associated with
significant changes in population dynamics.
In addition, it is generally unclear as to the
primary causes of these perturbations,
which could include synthetic chemicals as
well as naturally occurring plant-derived
compounds. However, correlative data,
supported in some cases by controlled labo-
ratory studies, suggest that alkyl phenol
ethoxylates and their degradation products,
chlorinated dibenzo-p-dioxins and difurans,
and PCBs, among other compounds, could
be contributing causative agents.

Perhaps the most fully documented
example of putative ecological effects
caused by a disruption of endocrine func-
tion has been reported for alligators in Lake
Apopka, Florida. Through a series of
detailed field and laboratory investigations,
it appears likely that a mixture of dicofol,
DDT, and 1,1-dichloro-2,2-bis(p-chloro-
phenyl)ethylene (DDE) associated with a
pesticide spill in 1980 is responsible for a
variety of developmental effects that indi-
cate a demasculinization of male alligators
and "super-feminization" of females. In
addition, the effects of the spill also have
been reported to include detrimental effects
on hatching success and population levels.

Instances of potential effects of chemicals
on the endocrinology of warm-blooded
wildlife also have been reported. For exam-
ple, a variety of organochlorine insecticides
have been implicated in eliciting feminiza-
tion of male gull embryos and has led to the
suggestion that these effects may contribute
to locally observed population declines and
skewed sex ratios in Western gulls in
California and Herring gulls in the Great
Lakes. Although numerous controlled labo-
ratory studies have been undertaken that
demonstrate a variety of compounds can
elicit hormonally mediated effects on repro-
duction and development in rodents, the
establishment of credible cause-and-effect

relationships in wild mammalian popula-
tions has not been reported in the scientific
literature to date. However, the extreme
sensitivity of mink, seals, and related species
to adverse reproductive effects of 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD) and
PCBs is well established.

STRENGTHS AND WEAKNESSES OF THE
DATA. Numerous effects in aquatic life and
wildlife have been hypothesized to be elicited
by chemicals that disrupt hormonally medi-
ated events underlying reproduction and
development. The strongest evidence avail-
able suggesting that specific compounds or
dasses of compounds could potentially affect
the endocrinology of aquatic life and wildlife
is typically associated with controlled labora-
tory investigations. However, although these
suborganismal- and organismal-level studies
help to establish a mechanistic potential for
specific compounds, it is generally not dear
if these effects would be observed in environ-
mentally relevant exposure scenarios or to
what extent changes in these in vitro and in
vivo processes can reasonably be projected to
cause dedines in populations. In addition,
while several well-designed investigations are
reported in the literature that establish a
sound mechanistic framework for specific
effects, the amount of comparative inter-
species data is limited. For example, there is
comparatively little information available for
amphibian species, and the majority of
studies available for fish are restricted to
teleosts (bony fish).

Several intensive field studies also have
been reported that clearly document a wide
variety of physiological abnormalities in
invertebrates, fish, reptiles, birds, and mam-
mals. In some instances, these abnormalities
also have been observed within declining
populations. Further, in many of these
studies, trends in adverse effects have been
correlated with environmental concentra-
tions of synthetic and/or naturally occurring
endocrine-modifying chemicals. However,
as with most uncontrolled field studies, it is
difficult in most cases to establish clear
cause-and-effect relationships.

CONCLUSIONS. A challenging goal in
assessing the ecological risks of endocrine-
disrupting chemicals will be to establish
the likelihood of adverse effects on popula-
tions and communities of aquatic life and
wildlife as a result of toxic effects observed
within species of concern. Equally chal-
lenging is the need to elucidate cause-and-
effect relationships for responses observed
in the field, where numerous chemical and
nonchemical stressors could be responsible,
either alone or in combination. Although

numerous reports indicate a variety of com-
pounds can modulate the endocrine system
and affect reproduction and development in
invertebrates, fish, and wildlife, few exam-
ples are currently available that establish the
extent to which these insults at the organis-
mal level have, or could, result in adverse
population responses. To date, the most
credible examples illustrating significant
population dedines as a result ofexposure to
endocrine-disrupting chemicals have been
reported for alligators in central Florida and
some local populations of marine inverte-
brate species. Because endocrine-disrupting
chemicals can elicit a variety of hormonal
responses and adverse effects in the repro-
duction and development of organisms, it
can reasonably be hypothesized that these
compounds could cause population level
impacts in additional species or in other
ecosystems. Certainly, from a problem for-
mulation perspective within an ecological
risk assessment, chronic exposures to com-
pounds that can selectively affect reproduc-
tion and development raise reasonably
straightforward concern over potential pop-
ulation effects. However, toxicological
effects observed within organisms do not
necessarily all have the same potential to
impact populations nor should it be
expected that these varied effects would
elicit population responses at the same expo-
sure levels. In summary, prospective ecologi-
cal risk assessments for compounds known
or suspected to disrupt the endocrinology of
aquatic life and wildlife are confronted with
the need to establish the significance of
observations at the suborganismal and
organismal levels in the context of popula-
tion and community responses. An under-
standing of linkages between these levels of
biological organization also is required to
help establish mechanistically plausible
cause-and-effect relationships in retrospective
risk assessments.

Based on the toxic mechanisms associ-
ated with xenobiotics, the collection and
interpretation of organismal-level responses
associated with reproductive and develop-
mental processes are needed to better pre-
dict and interpret changes in populations
and communities of aquatic life and
wildlife. Unfortunately, end points derived
from typically employed bioassays, which
are based on short-term exposures, proba-
bly are not appropriate for identifying most
reproductive or developmental effects or
for forecasting changes at higher levels of
biological organization. However, because
of the mechanisms associated with these
compounds, it is reasonable to assume that
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the implementation of new techniques or
the modification of existing approaches can
appropriately quantify suborganismall
organismal responses (i.e., measurement
end points) that can be readily linked to
models and measurements designed to
quantify changes in population dynamics
(i.e., assessment end points).

AGENCY ACTIONS. While the potential
role of endocrine-disrupting chemicals in
eliciting adverse ecological effects has
heightened the need to develop and imple-
ment a more systematic examination of
long-term chemical exposures, the U.S.
EPA has long recognized the importance of
this issue in ecological risk assessments. For
example, chemicals such as tributyltin,
DDT, and PCBs have been banned or
heavily regulated, in part because of their
effects on aquatic life and wildlife follow-
ing long-term exposures. In addition, the
ongoing reassessment of the effects of
2,3,7,8-TCDD and related compounds on
ecological resources was initiated because of
concerns associated with reproductive and
developmental effects in fish and wildlife.

Further Research. Increasing concern
over persistent bioaccumulative chemicals
and appropriate techniques to assess their
toxicological and ecological effects is evi-
denced in the ongoing efforts of the Office
of Prevention, Pesticides and Toxic
Substances to assess high-production-vol-
ume industrial chemicals, the Office of
Water's development of sediment quality
criteria, and the focus of the Great Lakes
Water Quality Initiative. In addition, the
Office of Research and Development has
published the results of two workshops held
in 1995 that specifically addressed the issue
of environmental endocrine disruption
(1,2). The findings from these workshops
cover a broad range of short-term and long-
term research objectives that are relevant for
both prospective and retrospective assess-
ments. Research needs range from improved
techniques for rapidly screening untested
chemicals for endocrine-disrupting potential
to improved approaches to quantify the
extent of current exposures and effects of
suspected compounds in human popula-
tions, as well as in aquatic life and wildlife.
For risk assessment needs, a research strategy
is under way that dearly addresses the causal
linkage of observations at the subcellular
through organismal levels of biological orga-
nization to responses of populations and
communities. Such a research program,
which will incorporate both intramural and
extramural researchers (a call for research
proposals was issued by the U.S. EPA in

February 1996), has been developed to sup-
port human health and ecological risk
assessments for agents that may operate via
an endocrine disruption mechanism.

Introduction
This document provides an overview of the
current state of the science relative to envi-
ronmental endocrine disruption. Particular
attention is paid to peer-reviewed published
reports of adverse health and ecological
effects attributed to specific environmental
agents and to information in the Agency's
pesticide registration and toxic substances
databases. The document identifies gaps in
our understanding of mechanisms of action
for agents that disrupt the endocrine and
endocrine-supported systems. It analyzes
and interprets current hypotheses and spec-
ifies some of the uncertainties in our knowl-
edge. Finally, some general research needs
are recommended. This overview is not
intended to address all components of the
endocrine system that might be disrupted
by environmental insult. Rather, it empha-
sizes those reports of adverse human and
ecological reproductive, carcinogenic,
neural, and immune effects in which a
common theme of endocrine disruption has
been hypothesized.

General Background
Investigators began expressing their
concern for estrogenic effects of environ-
mental xenobiotic chemicals more than 25
years ago (3-9). Within the past 5 years,
this concern has become focused and
intensified (1,2,10-14). Attention has
been called to the potential hazards that
some chemicals may pose for human
health and ecological well-being (breast
and reproductive tract cancers, reduced
male fertility, abnormality in sexual devel-
opment, etc.) (11,15-22). There has been
considerable controversy over the report
(23) that human sperm counts have
decreased over the past 50 years.

Clear evidence exists that in utero
exposure to certain potent synthetic estro-
gens such as DES has an adverse reproduc-
tive effect in the sons (24) and daughters of
women treated with DES during their preg-
nancies and that a rare adenocarcinoma of
the vagina was seen some 20 years later in
the daughters (25). In female rats of the
AEI strain, which has a low incidence of
spontaneous mammary tumors, both prena-
tal and postnatal exposure to DES increased
the numbers of mammary tumors (26).
Male rats treated from gestational day 14 to
postnatal day 3 with the antiandrogenic

fungicide vinclozolin exhibited varied
reproductive dysfunction as adults (27).

Caged male rainbow trout exposed to
effluent from 15 different sewage treatment
facilities in the United Kingdom expressed
elevated concentrations of vitellogenin, an
estrogen-induced yolk protein precursor
(12). Furthermore, there is ample evidence
that the pesticide DDT, now banned in this
country, and its metabolites cause a dwin-
dling bird population due to testicular
feminization of male embryos leading to
abnormal sex ratios of adult Western gulls
in Southern California in the 1960s
(28,29). More recendy, declines in birthrate
and increasing male reproductive tract
anomalies among alligators in Florida's Lake
Apopka have been reported (30).

For the past 25 years, the U.S. EPA has
been committed to the protection of
human health and the environment and has
ongoing research programs in these areas.
The Agency has followed dosely the recent
reports dealing with environmental
endocrine disruptors on human health and
ecological well-being. The U.S. EPA is par-
ticularly concerned with the possible role
that xenobiotics, including endocrine dis-
ruptors, may have in the etiology of human
cancers and adverse developmental, repro-
ductive, immune, and neurological effects
on human health. The Agency also is con-
cerned with what possible adverse role these
endocrine disruptors may have on growth
and survival of animal species. Evidence for
this concern is documented by ongoing
research of the Office of Research and
Development (ORD), a Risk Assessment
Forum colloquium on environmental hor-
mones held in April 1994, and two
endocrine disruptor research needs work-
shops held in April and June 1995. Two
reports titled Research Needs for the
Assessment ofHealth and Environmental
Effects ofEndocrine Disruptors: A Report of
the U.S. EPA-Sponsored Workshop (1) and
Developing of a Research Strategy for
Assessing the Ecological Risk ofEndocrine
Disruptors (2) have resulted from these
meetings. In addition, an ORD Research
Plan for Endocrine Disruptors has been writ-
ten. Other Agency initiatives include a
workshop on Leydig cell hyperplasia in the
fall of 1995 (31), the Office of Prevention,
Pesticides, and Toxic Substances' revision
of the developmental and two-generation
reproductive toxicity test guidelines (for
mammalian species), the U.S. EPA guide-
lines for reproductive toxicity risk assess-
ment, the dioxin risk assessment document,
the draft proposed guidelines for ecological
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risk assessment, and the new proposed
carcinogenesis risk assessment guidelines.

The Agency is aware of three recent
reports (two of them published) by Euro-
pean governments (United Kingdom,
Denmark, and Germany) dealing with envi-
ronmental endocrine disruption (32,33). An
extensive exploration of environmental
endocrine disruption is the subject of an
NAS project supported by the U.S. EPA,
the Centers for Disease Control and
Prevention, and the Department of the
Interior (34).

Hormones
Hormones are natural secretory products of
endocrine glands and travel via the blood-
stream to exert their effects at distant target
tissues or organs. Chemically, hormones are
glycoproteins, polypeptides, peptides,
steroids, modified amino acids, cate-
cholamines, prostaglandins, and retinoic
acid. They are transported in blood at very
low concentrations (ng or pg/ml, i.e., 10-9
or 10-12 g/ml) in the free state or attached
to carrier proteins. They bind to specific
cell surfaces or nuclear receptors and exert
important regulatory, growth, or homeosta-
tic effects. Steroid and thyroid hormones,
bound to their protein receptors, regulate
gene activity (expression) as DNA tran-
scription factors; protein and peptide hor-
mones function by transmitting a signal
(intracellular second messenger) to regulate
ion channels or enzymes. Some of the
major endocrine glands include the hypo-
thalamus, pituitary, thyroid, parathyroid,
pancreas, adrenal, ovary, and testis. Other
endocrine tissues indude the placenta, liver,
kidney, and cells throughout the gastroin-
testinal tract. The secreted hormones help
regulate general body growth and metabo-
lism, other endocrine organs, and reproduc-
tive function. Some target organs and
tissues under endocrine control include the
mammary glands, bone, muscle, the ner-
vous system, and the male and female
reproductive organs.

In addition to the classical hormones
found in higher vertebrates, including
humans, there are hormones in inverte-
brates (e.g., ecdysone) and plants (e.g., aux-
ins). Consequently, when environmental
endocrine disruptors mimic or interfere with
the action of endogenous hormones, they
have the potential of influencing human
health and exerting significant ecological
effects globally.

Paracrine (secretions stimulating
adjacent tissues) and autocrine (secretions
targeted to the cell that synthesized the

secretion) factors will not be considered
in this paper because little information is
available about their disruption by
environmental agents.

Endocrine/Hormone Disruptors
An environmental endocrine or hormone
disruptor may be defined as an exogenous
agent that interferes with the synthesis, secre-
tion, transport, binding, action, or elimina-
tion of natural hormones in the body that
are responsible for the maintenance of
homeostasis, reproduction, development,
and/or behavior. In this document the term
endocrine disruptor will be used synony-
mously with hormone disruptor. Of impor-
tance here is the concept that endocrine
disruptors encompass more than just envi-
ronmental estrogens and include any agent
that adversely affects any aspect of the entire
endocrine system. Endocrine disruptors are
usually either natural products or synthetic
chemicals that mimic, enhance (an agonist),
or inhibit (an antagonist) the action of hor-
mones. Under some circumstances, they
may act as hypertrophic (stimulatory) agents
and tumor promoters. Dose, body burden,
timing, and duration of exposure at critical
periods of life are important considerations
for assessing adverse effects of an endocrine
disruptor. Effects may be reversible or irre-
versible, immediate (acute) or latent (not
expressed for a period of time).

The endocrine system includes a num-
ber of central nervous system (CNS)-pitu-
itary-target organ feedback pathways
involved in regulating a multitude of bod-
ily functions and maintaining homeostasis.
As such, there are potentially several target
organ sites at which a given environmental
agent could disrupt endocrine function.
Furthermore, because of the complexity of
the cellular processes involved in hor-
monal communication, any of these loci
could be involved mechanistically in a
toxicant's endocrine-related effect. Thus,
impaired hormonal control could occur as
a consequence of altered hormone:
synthesis, storage/release, transport/clear-
ance, receptor recognition/binding, or
postreceptor responses.

Altered Hormone Synthesis. A
number of compounds possess the ability
to inhibit synthesis of various hormones.
Some compounds inhibit specific enzymatic
steps in the biosynthetic pathway of
steroidogenesis (e.g., aminoglutethimide,
cyanoketone, ketoconazole). Estrogen
biosynthesis can be inhibited by exposure to
aromatase inhibitors such as the fungicide
fenarimol (35).

Alterations in protein hormone synthesis
can be induced by gonadal steroids and
potentially by environmental estrogens and
antiandrogens. Both estrogen and testos-
terone have been shown to affect pituitary
hormone synthesis directly or by changes
in the glycosylation of luteinizing hormone
(LH) and follicle-stimulating hormone
(FSH) (36). A decrease in glycosylation of
these glycoproteins reduces the biological
activity of the hormones. Any environmen-
tal compound that mimics or antagonizes
the action of these steroid hormones could
presumably alter glycosylation. The biopo-
tency of pituitary hormones also may be
altered by changes in glycosylation in
response to treatment with biogenic amines
(i.e., dopamine) and gonadotropin-releas-
ing hormone (GnRH) [for review, see
Wilson et al. (36)] .

Synthesis of nonpeptide, nonsteroidal
hormones such as epinephrine and mela-
tonin, which also serve as CNS neurotrans-
mitters, can be altered by environmental
agents. Changes in the synthesis of nor-
epinephrine and epinephrine have been
observed following exposure to a number
of dithiocarbamates, metam sodium, and
carbon disulfide (37-39). Exposure to these
copper chelating compounds suppresses
the activity of dopamine-f-hydroxylase,
thereby inhibiting the conversion of dopa-
mine to norepinephrine and subsequently
to epinephrine.

Altered Hormone Storage and/or
Release. Catecholamine hormones are
stored in granular vesicles of chromaffin
cells within the adrenal medulla and within
presynaptic terminals in the CNS. This
mechanism for storage is important to the
maintenance of normal concentrations of
the hormone so that they can be released
quickly on demand. Without such a stor-
age mechanism, the hormones are subject
to deamination by monoamine oxidase.
Reserpine and amphetamine are well-
known examples of compounds that can
affect this storage process. In contrast,
steroid hormones do not appear to be
stored intracellularly within membranous
secretory granules. For example, testos-
terone is synthesized by Leydig cells of the
testis and released on activation of the LH
receptor. Thus, compounds that block the
LH receptor or the activation of the 3',5'-
cyclic AMP (cAMP)-dependent cascade
involved in testosterone synthesis can
rapidly alter the secretion of this hormone.

The release of many protein hormones
depends on activation of second messenger
pathways such as cAMP, phosphatidylinositol
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4,5-bisphosphate, inositol 1,4,5-trisphos-
phate, tyrosine kinase, and Ca2+. Inter-
ference with these processes consequently
will alter the serum levels (availability) of
many hormones. Several metal cations have
been shown to disrupt pituitary hormone
release presumably by interfering with Ca2+
flux (40).

Altered Hormone Transport and
Clearance. Hormones are transported in
blood in the free or bound state. Lipid-
soluble hormones are transported in the
blood by specialized transport (carrier) pro-
teins synthesized in the liver. The same
binding globulin, known as sex/steroid
hormone-binding globulin (SHBG) or
testosterone-estrogen-binding globulin
(TEBG), can associate with either testos-
terone or estrogen. Glucocorticoids are
bound to corticosteroid-binding globulin
(CBG) or transcortin in the circulation.
Similarly, the thyroid hormones, tri-
iodothyronine (T3) and thyroxine (T4), are
transported in the blood on thyroxine-
binding globulin, prealbumin, and albu-
min. Regulation of the concentration of
these binding globulins in the blood is of
some practical significance because there
may be either increases or decreases that
could affect steroid hormone availability.
The levels of both TEBG and transcortin
have been shown to be modified by gonad-
ectomy and gonadal steroid hormone
replacement. Salicylates and diphenylhy-
dantoin may modify the circulating levels
of T4 because of changes in thyroxine-
binding globulin. Estrogens increase the
TEBG concentration in plasma, whereas
androgens and pharmacologic doses of glu-
cocorticoids decrease TEBG (41).

The clearance of hormones is influenced
by compounds that alter liver enzymes
involved in hormone clearance. For exam-
ple, DDT analogs are potent inducers of
hepatic microsomal monooxygenase activity
in vivo (42). Induction of this activity by
treatment with DDT analogs could possibly
cause a decrease in testicular androgen as a
result of enhanced degradation of endo-
genous androgens by the monooxygenase
system. Similarly, treatment with lindane (,y-
hexachlorocyclohexane) has been reported
to increase the clearance of estrogen (43).
However, no evidence for enhanced clear-
ance was noted in a study by Laws et al.
(44) in which serum estradiol was measured
at multiple time points after estrogen
administration via subcutaneous silastic
implants in doses aimed at producing physi-
ological levels of the steroid hormone. It
should be pointed out that pan-fried meat

and cruciferous vegetables can induce
cytochrome P4501A2 in humans (45).
Recently, a mechanistic, dosimetric model
of TCDD effects on increasing hepatic
UDP-gluconosyltransferase for removal of
T4 has been reported (46).

Altered Hormone Receptor Recog-
nition/Binding. Hormones elicit responses
from their respective target tissues through
direct interactions with either intracellular
receptors or membrane-bound receptors.
Specific binding of the natural ligand to its
receptor is a critical step in hormone func-
tion. Intracellular (nuclear) receptors such
as those for sex steroids, adrenal steroids,
thyroid hormones, vitamin D, and retinoic
acid regulate gene transcription in a ligand-
dependent manner through their interac-
tion with specific DNA sequences (response
elements). New messenger RNAs are
synthesized, processed, and translated to
produce new proteins.
A number of environmental agents may

alter this process by mimicking the natural
ligand and acting as an agonist or by inhibit-
ing binding and acting as an antagonist. The
best known examples are methoxychlor,
chlordecone (Kepone), DDT, some PCBs,
and alkylphenols (e.g., nonylphenols and
octylphenols), which can disrupt estrogen
receptor function (47,48). The antiandro-
genic action of the dicarboximide fungicide
vindozolin (49) is the result of an affinity of
this compound's metabolites for the andro-
gen receptor (17). Interestingly, the DDT
metabolite p,p'-DDE has been found to
bind also to the androgen receptor and block
testosterone-induced cellular responses
in vitro (50,51).

Many of the chemicals classified as
environmental estrogens can actually inhibit
binding to more than one type of intra-
cellular receptor. For example, o,p'-DDT
and chlordecone can inhibit endogenous
ligand binding to the estrogen and proges-
terone receptors, with each compound hav-
ing IC50 values that are nearly identical for
the two receptors. Other compounds such
as nonylphenol and the metabolite of
methoxychlor, 2,2-bis(hydroxyphenyl)-
1,1,1-trichloroethane, have the ability to
inhibit binding to the estrogen, proges-
terone, and androgen receptors with similar
affinities (52).

Receptors for protein hormones are
located on and in the cell membrane. When
these hormones bind to their receptors,
transduction of a signal across the membrane
is mediated by the activation of second-mes-
senger systems. These may include alter-
ations in G-protein-cAMP-dependent

protein kinase A (e.g., after LH stimulation
of the Leydig cell), phosphatidylinositol reg-
ulation of protein kinase C and inositol
triphosphate (e.g., after GnRH stimulation
of gonadotrophs; thyrotropin-releasing hor-
mone stimulation of thyrotrophs), tyrosine
kinase (e.g., after insulin binding to the
membrane receptor), and calcium ion flux.
Xenobiotics thus can disrupt signal transduc-
tion of peptide hormones if they interfere
with one or more of these processes.

Altered Hormone Postreceptor
Activation. Once the endogenous ligand or
an agonist binds to its receptor, a cascade of
events is initiated indicative of the appropri-
ate cellular response. This includes the
response necessary for signal transduction
across the membrane or, in the case of
nuclear receptors, the initiation of or alter-
ation in transcription and protein synthesis.
A variety of environmental compounds can
interfere with the membrane's second
messenger systems. For example, cellular
responses that depend on the flux of cal-
cium ions through the membrane (and the
initiation of the calcium/calmodulin-depen-
dent cellular response) are altered by a vari-
ety of metal cations (i.e., lead, zinc,
cadmium) (40). Disruption of G proteins
and transduction of receptor-generated sig-
nals leading to a biological response (acti-
vation of protein kinase A) occur from
exposure to cholera and pertussis toxins
(53). Similarly, lindane, among other envi-
ronmental compounds, has been demon-
strated to decrease phosphatidylinositol
turnover in the membrane and thus reduce
protein kinase C activation. Interestingly,
the well-known antiestrogen tamoxifen also
inhibits protein kinase C activity (54).
Alternatively, the phorbol esters are known
to mimic diacylglycerol and enhance protein
kinase C activity.

Steroid hormone receptor activation can
be modified by indirect mechanisms such as
a downregulation of the receptor (tempo-
rary decreased sensitivity to ligand), as seen
after TCDD exposure (including the estro-
gen, progesterone, and glucocorticoid
receptors) (55,56). Consequently, because
of the diverse known pathways of endocrine
disruption, any assessment must consider
the net result of all influences on hormone
receptor function and feedback regulation.

RiskAssesment Paradigm
Evaluation and analysis of reported
environmental endocrine disruption phe-
nomena should be examined from a risk
assessment perspective. Generally, quanti-
tative risk assessment includes estimation
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of levels of exposure to a toxic substance
that leads to specified increases in lifetime
incidence rates or in the probable occur-
rence of an undesirable consequence (57).
The four components of the noncancer
risk assessment paradigm for human health
are hazard characterization, dose-response
assessment, exposure assessment, and risk
characterization (58).

The ecological risk assessment frame-
work is conceptually similar to the approach
used for human health risk assessment, with
a few distinctions. Ecological risk assessment
considers effects beyond individuals of a sin-
gle species and may examine population,
community, or ecosystem-level risks. The
framework consists of three major phases:
problem formulation, analysis (which
includes exposure and effects assessment),
and risk characterization. The end points for
ecological risks most often considered are
survival, growth, and reproduction of indi-
viduals of a few representative species and
populations. Although not specific to
endocrine disruption effects, some limited
inferences about endocrine-controlled
processes may be made.

Hazard characterization focuses on the
qualitative evaluation of the adverse effects
of an agent on human and animal health
and ecological well-being. Health end
points of particular concern with environ-
mental hormones are reproductive (includ-
ing developmental) effects, cancer, and
neurological and immunologic effects.

For human health, relevant and
adequate epidemiologic studies and case
reports for the agent(s) are preferable. In
the absence of this information, pertinent
test animal toxicology studies should pro-
vide useful information. In vitro studies
may provide useful data for elucidating
mechanisms of toxicity but are not suffi-
cient by themselves to characterize a hazard.
Important factors to consider in the evalua-
tion of a hazard include inherent toxicity,
route of exposure, dose level, timing and
duration of exposure, body burden, suscep-
tible populations and interspecies differ-
ences, and all of the assumptions and
uncertainties in the data.

Dose-response assessment is the process
of characterizing the relationship between
the dose of an agent and the incidence/
degree of an adverse effect. Factors to con-
sider in the dose-response assessment are
the intensity or frequency of the response
with increasing dose, the shape and slope of
the dose-response curve, pharmacokinetics
(uptake, distribution, metabolism/detoxifi-
cation, elimination), and the methods used

for extrapolation of data from surrogate or
sentinel species to ecological end points or
to humans.

The exposure assessment component of
the paradigm attempts to measure the
intensity, frequency, and duration of expo-
sure to an agent in the environment or to
estimate hypothetical exposures that might
arise from the release of new chemicals.
Factors to consider in the exposure assess-
ment include the amount of the agent in
the environment; reactivity; half-life; envi-
ronmental fate and disposition of the
agent; the magnitude, duration (acute, sub-
chronic, lifetime), schedule (timing), and
route of exposure (oral, inhalation, dermal,
aquatic); the size and nature of the exposed
population; and all of the uncertainties and
assumptions in the estimates.

Risk characterization is the process of
estimating the incidence of a health or eco-
logical effect under various conditions of
human and biotic exposure. It draws
together the hazard, dose-response, and
exposure assessments. It discusses the
assumptions, uncertainties, and limitations
of all of the data.

With respect to recent reports of hazard
(i.e., endocrine disruption causing human
health or ecological effects), a critical ele-
ment for risk assessment is the exposure
assessment component. Without a clear
understanding as to the magnitude and
distribution of exposure and the potency
and nature of endocrine activity, develop-
ment of a credible risk assessment for spe-
cific endocrine-disrupting agents is not
feasible. Another factor to consider in the
evaluation of possible risk is whether test-
ing paradigms in past or current use are
capable of adequately identifying an agent
as an environmental endocrine disruptor.

It should be emphasized that this special
report is an interim effects and analysis doc-
ument until the NAS releases its assessment
report on environmental endocrine disrup-
tion. The current document focuses pri-
marily on human health and ecological
hazard effects (characterization) as found
within peer-reviewed literature.

Controversy within the
Scientific Community
In the wake of media coverage dealing with
possible reproductive health and cancer
concerns (59,60), a few toxicologists have
questioned whether these adverse health
effects can be attributed to environmental
endocrine disruption (56,61,62). Argu-
ments for a demonstrable link between
hormone-disruptive environmental agents

and human reproductive health effects are
supported by the fact that many pesticides
and other agents with estrogenic or antian-
drogenic activity operate via hormone recep-
tor mechanisms. However, in the few
studies of suspected weak estrogens, such as
the alkylphenols, some 1,000 to 10,000
times more of the weak estrogen is required
to bind 50% of the estrogen receptor than
estradiol itself (48). In other assays, 106
times more of the agent may be required
than for estradiol. Of course, crucial to risk
assessment is the need to know how many
receptors must be occupied before activation
of a response can ensue. For some hormones
such as human chorionic gonadotropin
(hCG), as little as 0.5 to 5% receptor occu-
pancy is required for full activation of
response. For other hormones (those that
require protein synthesis for expression of
effect), higher levels of receptor occupancy
are needed (63).

In general, because of the precise yet
adaptable control mechanisms and the
intertwined nature of the hormonal bal-
ance, modest amounts of chemical exposure
seldom compromise normal physiological
functions. Fluctuations of hormone con-
centration and receptor activities, by
design, absorb some environmental and
physiological challenges to maintain home-
ostasis in adults. Only when the equilib-
rium control mechanisms are overwhelmed
do deleterious effects occur. An important
question is whether homeostatic mecha-
nisms are operative in the embryo and
fetus. a-Fetoprotein, to which endogenous
sex steroids bind avidly, is thought to exert
some protective function in developing
fetuses to elevated estradiol that occurs dur-
ing pregnancy. However, it is known that
free estradiol, under experimental condi-
tions in female rats, may have access to
brain and other target organs in the fetus
and neonate (64). DES is not bound to a-
fetoprotein (65) and is not metabolized by
the placenta as is estradiol (66). Whether
other xenoestrogens behave in a similar
manner is not known.

Production of any hormone in the
endocrine system is the result of a chain of
events involving precisely choreographed
interactions of many other endocrine organs.
Therefore, manifestation of an endocrine
disorder may be associated with multiple
changes in hormone concentrations.

Some investigators (67,68) have
proposed the use of in vitro assays to screen
for estrogenic or other hormonal activity.
Although steroid receptors bound to their
ligand act as transcription factors for gene
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expression in the target tissue, simple in
vitro screening assays based on binding to a
receptor are not sufficient in themselves for
measuring hormone activity. Binding of lig-
and to its specific receptor must be corre-
lated with a physiologic response. For such
screening assays to be accepted as indicative
of hormonal alteration, they must be thor-
oughly validated in a number of qualified,
independent laboratories. This validation
requires the correlation of receptor binding
with a physiologic end point, for example,
induction of the progesterone receptor
(44), increase in uterine peroxidase (69), or
an increase in vitellogenin in the case of the
estrogen receptor. Furthermore, before
screening assays can be used in a tier
approach for evaluating hormone effects, in
vitro assays need to be validated in vivo (in
the whole animal). In the case of estrogen-
mimicking agents, uterotrophic responses,
progesterone receptor induction, or gonado-
trophin inhibitory responses in ovariec-
tomized rats or mice should be undertaken
for validation in the whole animal. Although
estrogenic effects have been cited as examples
in this document, it is important to realize
that any hormone has the potential of being
disrupted in one way or another by an envi-
ronmental agent, and considerations similar
to those for estrogenic effects apply.

Specific End Points
of Concern
Human Healdth Effecs
Female Reproductive and Developmental
EJfects. OVARY AND REPRODucrIvE TRACT.
With the exception of endometriosis and
vaginal and breast cancer, few recent reports
have found environmental endocrine dis-
ruptions to be causative mechanisms seri-
ously affecting human female reproduction.
The issues of endometriosis and breast
cancer in humans have been raised and are
discussed in separate sections below.
Structural abnormalities of the uterus and
oviducts, reproductive dysfunction, and
nonneoplastic lesions such as parovarian
cysts have been associated with prenatal
exposure to the estrogenic compound DES
in laboratory animals (70). Most of these
same multigenerational adverse effects due
to DES exposure also have been reported in
women (71). "Estrogenism" in livestock
caused by toxins associated with the fungal
genus Fusarium has been associated with
uterine hypertrophy, decreased ovarian size,
abortion, fetal resorption, and premature
birth (72). These findings indicate that
when hormonal balance is disturbed, the

reproductive health of the mother and the
developmental and reproductive soundness
of the offspring, both male and female, may
be in jeopardy.

In developmental toxicity testing
studies, emphasis is placed on the timing of
the dose of a compound such that it coin-
cides with organogenesis and on the sub-
sequent recording of any birth defects that
might occur. However, concerns have been
raised over the possibility of multigenera-
tional effects of endocrine-disrupting
chemicals that persist or do not appear
until after environmental exposure has
ended. This hypothesis proposes that
maternal animals, including humans, store
endocrine-disrupting agents in their fat
prior to reproduction, then mobilize these
agents during periods of egg laying, preg-
nancy, or lactation (11). As a result of this
mobilization of stored agent(s) within
maternal animals during critical windows
of embryonic or fetal development and
vulnerability, immediate or latent adverse
effects may occur in the offspring that are
likely to be irreversible. This phenomenon
is suggested in conclusions by Guillette et
al. (30) from their observations of Florida
alligators. These studies hypothesize a
decrease in the number of male hatchlings
when maternal animals are exposed before
fertilization to high concentrations of the
pesticide dicofol. It is interesting to note
that during the manufacturing process the
spilled dicofol was contaminated with
DDT and its degradates.

It should be noted that in the two-
generation reproductive testing protocol,
animals are exposed during several life
stages and any multigenerational adverse
reproductive effects due to environmental
endocrine disruption should be detected
with the end points added to the new
protocol (73).

Background. The reproductive life cycle
of the female mammal may be divided into
phases that include fetal, prepubertal,
cycling adult, pregnant, lactating, and
reproductively senescent stages. Although
there are a limited number of studies evalu-
ating reproductive function in the female
following toxicant exposure, it is important
that each stage of the life cycle be examined
thoroughly before one can assume that the
female is not influenced by environmental
endocrine disruptors. Traditionally, the
end points that have been used to evaluate
the female's reproductive capability include
the ability to become pregnant, pregnancy
outcome, and offspring survival and/or
development. Although reproductive organ

weights may be obtained and these organs
examined histologically in test species, these
measures do not necessarily detect abnor-
malities in dynamic processes such as
estrous/menstrual cyclicity or follicular atre-
sia unless degradation is severe. Similarly,
neither the toxic effects on pubertal onset
nor the long-term consequences of exposure
to suspected toxicants on reproductive
senescence have been examined routinely.

Irreversible developmental effects are
those that affect the vulnerable developing
organism, frequently at the time when
organ systems are beginning to be laid
down. Physiological effects are those that
occur any time after development and may
be reversible. Eroschenko (74) reported
that administration of Kepone to pregnant
rats or mice during the main period of fetal
organogenesis results in fetal toxicities and
malformations. Gellert and Wilson (75)
demonstrated that the female offspring of
Kepone-treated dams exhibit persistent
vaginal estrus and anovulation.

The consequences of disruption of the
ovarian (estrous) cycle can signal exposure
to a reproductive toxicant that affects
endocrine function. For example, perinatal
exposure to DES or methoxychlor not only
induces premature vaginal opening (76),
but often leads to the presence of an acyclic
condition (persistent or constant estrus) in
the adult (77). This condition is the result
of the agent's ability to masculinize the
developing, potentially female, brain. Such
animals fail to achieve normal ovulatory
LH surges, and their ovaries typically con-
tain numerous polyfollicular or polycystic
follicles and no corpora lutea. Prolonged
exposure to DES or methoxychlor during
adulthood also will lead to persistent or
constant vaginal estrus because of direct
estrogenic action on the vagina. However,
in this case, the exposed adult female's
ovaries become atrophied due to the
suppression of gonadotropin secretion by
the estrogenic compounds. It has been
reported that exposure to certain chlorotri-
azine herbicides (i.e., atrazine, simazine, or
cyanazine) also will induce a persistent
estrous condition in certain strains of rats
(i.e., Sprague-Dawley but not Fischer 344)
(78). In fact, it has been hypothesized that
this condition is responsible for the early
onset of mammary gland tumors in rats fed
diets containing the chlorotriazines during
the first year of life (79). However, in a
more recent study by Cooper et al. (80), it
was shown that Atrazine did not prolong
the number of days in estrus, but there is a
dose-dependent increase in the number of
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diestrous days (in both Sprague-Dawley
and Long-Evans hooded rats). At higher
doses, the female's ovaries were atrophied
and gonadotropin levels were low. At lower
doses, Atrazine appeared to induce repeti-
tive pseudopregnancies. The reason for the
apparent discrepancies between these
reports is not clear. However, it is clear
that Atrazine, and apparently several other
chlorotriazines, can disrupt ovarian func-
tion in the adult female rat and that an
endocrine mechanism is involved. The
mechanism of action of the chloro-s-tri-
azines appears to be estrogen receptor inde-
pendent (81), and the alterations observed
in the regulation of estrous cycling appar-
ently are due to a disruption in hypothala-
mic-pituitary regulation of ovarian
function (82).

Importantly, compounds other than
those that interact directly with estrogen or
other steroid hormone receptors can alter the
onset of puberty as well as ovarian function
in adulthood. For example, it has been
known for some time that administration of
prolactin to female rats could advance the
onset of puberty (83,84). These effects can
be induced by agents that disrupt CNS
regulation of prolactin secretion resulting in
hyperprolactinemia. Thus, placing a dopa-
mine receptor blocker, such as sulpiride, in
the drinking water of prepubertal females
advances the age ofvaginal opening (84).

Chloroquine, an antimalarial agent, is
reported to block calcium-calmodulin-
mediated responses. It is not surprising
that chloroquine exposure will lead to a
disruption of estrous cyclicity (85), because
follicular steroidogenesis and pituitary
hormone secretion depend, in part, on
calcium-calmodulin-mediated processes.

The human ovarian follicle is vulnerable
at several points in its development, and a
transient toxic insult to a specific locus and
time period may result in an adverse effect
not only to the follicle but also to the
resulting corpus luteum. In other words,
insult to the Graafian follicle and subse-
quent alterations in the sequence of its mat-
uration can lead to luteal dysfunction
following ovulation (86). Because the cor-
pus luteum is essential to the maintenance
of early pregnancy in humans, any insult to
the ovarian follide that gives rise to the cor-
pus luteum has the potential to adversely
affect pregnancy outcomes.

Several excellent reviews have dealt
with the ovarian follicle as a target for
xenobiotics (87,88). In addition to the
oocyte itself, the target may include cells of
the stratum granulosum, the cumulus

mass, the basal lamina, or the theca interna
and externa. Within the stratum granulo-
sum, basal granulosa cells, parietal granu-
losa cells, cumulus cells, gap junctions,
gonadotrophin, and other membrane or
intracellular hormone receptors may serve
as loci for ovarian toxicants. The adverse
effects of antineoplastic agents on antral fol-
licles and the sparing of primordial follides
have been demonstrated (89). The toxic
effects of cyclophosphamide on human
granulosa cell cultures have been reported
(90). A dose-related decrease in proges-
terone secretion by human granulosa cells
occurs with increasing concentrations of the
activated form of cyclophosphamide at lev-
els used therapeutically. Human cumulus
granulosa cells have been used to screen
reproductive toxicants (91). Vinblastine
inhibits progesterone secretion by human
granulosa-luteal cells (92). Methoxychlor,
a pesticide that when metabolized exhibits
estrogenic activity, reduces serum proges-
terone and impairs implantation in rats
treated during the first week of pregnancy
(93). Premating treatment of female rats
with the insecticide heptachlor also
decreases implantations, increases resorp-
tions, and decreases serum estrogen and
progesterone (94).

Within the oocyte, the zona pellucida,
oolemma, cortical granules, yolk, chromo-
somes, and spindle all serve as potential
targets for exposure to toxic chemicals. The
oocyte is particularly sensitive to metho-
trexate and cyclophosphamide (95-97).
Greatest risk to the oocyte occurs on the
days just prior to ovulation (98). Also sus-
ceptible to chemical insult are the thecal
components (interna cells with LH recep-
tors, fibroblasts, and smooth muscle cells of
the externa, and elements of the vascular
bed). Delayed ovulation and overripeness
of ova in rat studies result in chromosomal
anomalies leading to early embryonic
death (99,100). If mature oocytes remain
in the human Graafian follicle past mid-
cycle, the incidence of oocyte abnormalities
increases (101).

Mattison and co-workers (102) have
called attention to the basal lamina as a
permeable barrier to xenobiotics. Studies in
the human female are meager, however.
The anesthetic drugs thiopental and thi-
amylal traverse the follicular wall and have
been found in follicular fluid of patients
undergoing laparoscopy for oocyte retrieval
(103). In another study of 47 women,
oocyte recovery rates and subsequent
embryo cleavage rates were inversely related
to chlorinated hydrocarbon concentrations

that included DDT, PCBs, and hexa-
chlorobenzene (104). Buserelin, a GnRH
agonist employed in in vitro fertilization
programs also has been found in human
follicular fluid at 10 to 50% of serum con-
centrations (105). Although the above
observations document the potential for
specific chemical insult to the ovarian folli-
cle, many of these agents are genotoxic or
cytostatic chemicals, and it remains to be
demonstrated whether the mechanism of
action for these and other agents is via an
endocrine disruption pathway.

The effects of environmental endocrine
disruptors on hypothalamic-pituitary regu-
lation of ovulation are discussed elsewhere.
Finally, environmental estrogens also may
interfere with fertility by disrupting
implantation. In rats, Cummings and
Perreault (106) found that methoxychlor
increased the speed of embryo transport
through the oviduct (an estrogen-depen-
dent process) and therefore prevented
implantation because of insufficient time
for uterine preparation.

Toxicity Testing in Animals and
Extrapolation to Humans. Recently, the
Office of Pesticide Programs of the U.S.
EPA reviewed multiple databases in an
attempt to identify those chemicals with a
clear effect on female reproduction.
Records for 63 chemicals screened for non-
cancer health effects were evaluated. Eight
chemicals were considered to be potential
female reproductive toxicants because they
exhibited one or more of the following:
ovarian vacuolation (of unspecified attri-
bution), ovarian stromal hyperplasia, hem-
orrhagic ovaries, reduced number of
corpora lutea, increased uterine weights,
uterine metaplasia, or cystic uteri. Data are
briefly summarized below. In some of these
cases, the reported adverse female repro-
ductive effects occur at doses that exceed
the lowest observed adverse effect level for
other adverse, non-cancer health effects.
Consequently, these other end points of
toxicity currently drive the risk assessment.
In other words, the female reproductive
effect via a potential endocrine disruption
mechanism did not provide the critical
effect for any of those pesticides.

In the data review for the chemical
dicofol, ovarian vacuolation is reported in a
multigenerational reproductive study in
rats. However, the effect occurs at a dose
level that is 10 times the dose of acceptable
human exposure. Nevertheless, there is a
hint that this finding in female rats may be
associated with hormonal disruption
because the complete database indicates
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that multiple endocrine target organs and
multiple species are affected. It also is
conduded that the reported ovarian vacuo-

lation is associated with enhanced steroido-
genic activity. The question has been raised
about the purity of the chemical and its
possible contamination with DDT.

Hexaconazole causes decreased numbers of
corpora lutea and decreased uterine weight in
mice dosed at 225 mglkg/day in a 29-day
range-finding study.' In a mouse carcino-
genicity study at the highest dose level tested
(26.3 mg/kg/day), nominally decreased num-
bers of cystic glands in uteri and increased
numbers of hemorrhagic ovaries are noted.'
Molinate causes reduced fertility and ovarian

histopathology in rats at 50 ppm in the diet
(2.5 mglkg/day) with a no-observed effects
level (NOEL) of 0.03 mglkg/day in a two-
generation study.' In the case of molinate, a

carcinogenic potency factor (Q*) of 0.1 1
mg/kg/day1- (based on ovarian hyperplasia
and cancer) has been used to estimate carcino-
genic risk. In this case, mutagenicity studies
on molinate were both positive and negative.1
In addition, mutagenicity has been suggested
in an inhalation study where abnormal sperm
were observed in males treated at 0.64
mg/m3. This inhalation study demonstrated
reduced implants in untreated females bred to

treated males.' The NOEL was 0.30 mg/im3.
The reproductive effects and the ovarian
histopathology and mutagenic effects may
have mechanisms in common, but no

hormonal disruption has been reported.
The pesticide oxydemeton-methyl

induces cholinesterase inhibition at dose lev-
els two orders of magnitude lower than dose
levels that affect multiple reproductive organ

toxicity. Increased numbers of female rats
show no corpora lutea at 2.5 mg/kg/day of
oxydemeton-methyl, a dose level that also
causes increased epididymal vacuolation and
testes weight decreases in males and severe

brain, plasma, and red blood cell cholin-
esterase inhibition in both sexes. At these
high dose levels (near lethality), neurotrans-
mitters may have caused hormonal dis-
ruption at the pituitary level. Although
documentation has been found for only one

pesticide, other organophosphates may have
this potential at high dose levels.

Iprodione, procymidone, or vinclozolin
administration result in ovarian stromal
cell tumors, sex cord tumors, and/or luteo-
mas (small, benign lutein cell tumors) in
rats and/or mice.1 The lowest observable

effect levels for ovarian effects in lifetime
studies for these three pesticides were as

follows: iprodione, 600 mg/kg/day in mice;
procymidone, 100 mg/kg/day in rats; and
vinclozolin, approximately 3.0 mg/kg/day
in rats.1 Of the three pesticides, procymi-
done and iprodione are regulated by a Q
(because of carcinogenic concern) at even
lower dose levels than the reference dose
(RfD). Extensive endocrine studies indicate
that vinclozolin and procymidone cause
increases in LH and testosterone levels fol-
lowing binding to and inhibition of the
androgen receptor (17,107).' Iprodione
causes similar effects in the ovary, testis,
and accessory sex glands of rats and mice
but may operate through a different mech-
anism. However, these data have not been
fully reviewed at this time. Androgens are

necessary for follicular growth and ovula-
tion. They appear to play an important
role in regulating follicular development in
both the immature and mature cycling rat
(108,109). They also induce atresia of pre-
antral follicles (110) and play a role in
hCG-induced ovulation. Important to the
discussion of antiandrogen exposure to the
female, cyproterone acetate has been
reported to accelerate the rate of atresia and
subsequently transform the atretic preovu-

latory follicle into an ovarian cyst (111).
Exposure to pronamide, in long-term

carcinogenicity studies in rats, results in
ovarian histopathology at 48.8 mg/kg/day
in addition to thyroid and liver histopathol-
ogy.1 Testis, thyroid, and liver tumors are

seen at 8.46 mg/kg/day. Pronamide does
alter thyroid-stimulating hormone and thy-
roid hormone levels in the blood; however,
an evaluation of the reproductive hormones
has not been conducted.

In summary, review of the multiple data
sets available to the Office of Pesticide
Programs produced a rather limited set of
compounds that may be considered
endocrine disruptors in the female. Studies
conducted under testing guidelines cur-

rently required are not designed specifi-
cally to detect endocrine mechanisms or
specifically endocrine disruption; they are

designed to detect effects on end points of
reproductive concern that may occur

throughout several life stages of the animal
regardless of their mechanisms of action.
Specific procedures for identifying better
measures of potential endocrine disruption
are being developed and incorporated in
the more recent testing guidelines for devel-
opment and reproduction (73) and are dis-
cussed in the new Reproductive Toxicity Risk
Assessment Guidelines (112). Thus, future

assessment of potential reproductive haz-
ards should be facilitated. However, it
should be noted that additional data may
be required if results from studies con-

ducted under the new guidelines indicate a

need to further characterize the effects for
regulatory purposes.

Conclusions. Studies conducted under
testing guidelines currendy required are not
designed specifically to detect endocrine dis-
ruption. Specific procedures for characteriz-
ing some end points of endocrine disruption
are being developed and incorporated in
updated testing guidelines for reproduction.
With the inclusion of endocrine-sensitive
end points in these guidelines, the effects of
environmental agents on aspects of repro-
duction that involve endocrine disruption,
particularly during development, will be
better understood.

ENDOMETRIOSIS. Background. Endo-
metriosis is a painful reproductive and
immunologic disease of women character-
ized by aberrant location of uterine
endometrial cells. It affects approximately
5 million women in the United States from
15 to 45 years of age (113). Endometrial
tissue usually occurs in or on ovaries, uter-
ine ligaments, rectovaginal pouches, and
pelvic peritoneum. Endometriosis often
causes infertility, dysmenorrhea, and
pelvic pain. Dysmenorrhea is caused by the
sloughing of the estrogen-induced
proliferation of the ectopic endometrial
implant and the internal bleeding that
follows. The etiology of this disease is
unknown, but several hypotheses have
been proposed. The regurgitation theory
proposes that menstrual backflow occurs

through the uterine tubes with implanta-
tion of endometrial cells in extrauterine
sites. The metaplastic theory proposes
endometrial differentiation from coelomic
epithelium. The vascular/lymphatic dis-
semination theory provides a mechanism
to explain extra pelvic implantation.
Olive et al. (114) have published a review
of this disease.

An association between women with
endometriosis and high blood levels of
PCBs has been reported (115). In 1993,
research showed a link between TCDD
(dioxin) exposure and the development of
endometriosis in rhesus monkeys (116).
The severity of this lesion was dependent
on the dose administered (p< 0.00 1) over a

4-year period. Ten years after dosing, three
of seven animals exposed to 5 ppt dioxin
(43%) and five of seven animals exposed to
25 ppt dioxin (71%) had moderate-to-
severe endometriosis. In contrast, the
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frequency of disease in the control group
was 33%, similar to an overall prevalence of
30% in 304 rhesus monkeys housed at the
Harlow Primate Center (Madison, WI),
with no dioxin exposure. Pair-wise compar-
isons between controls and the 5 ppt group
and the 25 ppt group were p < 0.05 and
p < 0.025, respectively. This 1 5-year study
on a limited number of animals suggests
that latent female reproductive abnormali-
ties may be associated with dioxin exposure
in rhesus monkeys. Of course, other factors
(diet, facilities) at the Harlow Primate
Center may be contributing to the high
background incidence in controls and the
resident population. It is interesting that
both dioxin and PCBs are ligands for the
Ah receptor, which is known to suppress
the immune system (117,118). Recently,
Arnold et al. (119) concluded in a
reproductive toxicology study in rhesus
monkeys that the incidence and severity of
endometriosis lesions did not have any rela-
tionship with the ingestion of the PCB
Aroclor 1254.

Boyd and co-workers (120) conducted
a small clinical study to test the hypothesis
that serum dioxin concentrations have an
association with human endometriosis.
Serum samples from 15 women with
laparoscopically diagnosed endometriosis
(5 each with the disease classified as mild,
moderate, or severe) and an equal number
of geographically and age-matched controls
with a history of fertility and no clinical
evidence of endometriosis were analyzed
for the presence of 22 of the most common
dioxin, furan, and PCB congeners. No sta-
tistically significant correlations between
disease status and serum levels of halo-
genated aromatic hydrocarbons were
found. These preliminary data, admittedly
on a limited population, suggest that
serum dioxin concentrations may not be
related to human endometriosis. What is
seen in monkeys, therefore, may not apply
to humans.

Toxicity Testing in Animals and
Extrapolation to Humans. Whether current
body burdens of dioxin contribute to
background prevalence of endometriosis
in monkeys and whether a specific chemi-
cal plays a causative role in the etiology of
human endometriosis remain to be deter-
mined. An ongoing epidemiology study
of victims contaminated with dioxin in
the 1976 industrial accident in Seveso,
Italy, and who had serum concentrations
of 56 ppb should provide valuable human
data on the possible role of dioxin in
human endometriosis.

Conclusions. The evidence for supporting
the hypothesis that dioxin and PCBs are
causally related to human endometriosis via
an endocrine-disruption mechanism is very
weak. Further epidemiologic and clinical
research should be done to evaluate the pos-
sible role of chlorinated hydrocarbons in
the etiology of endometriosis in women.

BREAST CANCER. Background. This
year, more than half of a million
Americans will succumb to cancer, making
it the nation's second leading killer after
cardiovascular disease. Of this number,
46,000 will die of breast cancer, the second
leading cause of cancer deaths in women
after lung cancer (121). It is estimated that
one in eight or nine women in the United
States will develop breast cancer in her
lifetime. Over the past 20 years, the inci-
dence of breast cancer has increased by 1%
a year, due in part to improved diagnostic
procedures (mammography) and early
detection of small tumors (122,123). Even
with earlier detection, mortality rates have
remained level over the past 50 years
despite improved therapies. Although con-
siderable information on risk factors for
human breast cancer etiology is available
(sex, family history, age, race, age at
menarche, decreased parity, unopposed
estrogen therapy), elucidation of the pre-
cise roles that chemical carcinogens, physi-
cal (radiation and electromagnetic fields)
and biological agents (viruses), varied
lifestyles (diet, exercise, alcohol consump-
tion, abortion, and oral contraception),
and genetic susceptibility (oncogenes and
tumor suppressor genes) have to play in the
initiation, promotion, and/or progression
of this disease in humans makes the task a
monumental challenge.

It has been suggested that women
exposed to certain persistent pesticides, such
as organochlorines (e.g., DDT), PCBs,
and/or PAHs, have an increased risk of
developing breast cancer in their lifetime
(16,20,21,124). In general, these com-
pounds are lipophilic and environmentally
persistent. That some of these agents exhibit
weak estrogenicity is the basis for an estro-
gen window hypothesis that they may be
contributing to an increased risk of breast
cancer. This hypothesis is based on the con-
cept that extended, unopposed estrogen
exposure during in utero development,
puberty, and the perimenopausal periods
increases the risk of breast cancer in suscep-
tible women. Whether extended estrogenic
exposure acts as a complete carcinogenic fac-
tor or as a promoter is not known. The
estrogen-receptor complex interacts with

the genome and is mitogenic in responsive
tissues. Wolff et al. (20) linked breast cancer
to moderate levels of DDE, a breakdown
product of the estrogenic pesticide o,p'-
DDT. In a more recent nested case-control
study designed to evaluate organochlorine
levels in case patients long before breast
cancer diagnosis, adjusting for other known
risk factors for breast cancer and stratified
across racial and ethnic subpopulations,
Krieger and co-workers (125) concluded
that DDE and PCB exposure did not
increase the risk of breast cancer in the total
population, but the researchers did report
that DDE levels among black case patients
were higher than levels in black control
women. An earlier follow-up retrospective
cohort study ofwomen exposed occupation-
ally to elevated PCBs failed to demonstrate
an excess risk of breast cancer mortality
(126). A recent small, nested case-control
study enrolled in a polybrominated biphenyl
registry showed that women with serum
polybrominated biphenyls (PBB) levels of 2
to 4 ppb had a higher estimated risk for
breast cancer than women with less than 2
ppb (127). It should be noted that many of
these chemicals have been banned in the
United States and levels of them in the envi-
ronment have been declining in this coun-
try. In two recent epidemiologic reviews of
the breast cancer problem and the possible
role of organochlorine chemicals in its etiol-
ogy, the weight of evidence for an associa-
tion between organochlorines and human
breast cancer was not found to be com-
pelling (62,128). The issue of smoking and
breast cancer is controversial. Exposure to
cigarette smoking during adolescence
increases a woman's risk of breast cancer
(129). In MCF-7 breast cell cultures, how-
ever, several PAHs that bind to the Ah
receptor and that are constituents of ciga-
rette smoke decrease estrogen-induced cell
proliferation (130).

It should be noted that although mem-
bers of the organochlorine class of pesti-
cides, which include four remaining
registered pesticides (dicofol, endosulfan,
lindane, and methoxychlor), may produce
reproductive and developmental effects in
test species, the existing data do not sup-
port their potential for inducing mammary
gland tumors. Among the organochlorines
that have been banned or canceled
(DDT/DDE, chlordane, heptachlor,
mirex, aldrin/dieldrin), target organs for
carcinogenesis include the liver and thy-
roid. There are no reports in the Office of
Pesticide Programs's registration database
of an association between DDT/DDE
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exposure and rodent mammary gland
tumors, thereby providing little support to
the hypothesis linking these substances
with human breast cancer. Of course, this
assumes that rodent studies are predictive
ofhuman breast cancer.
A recent report by Brown and

Lamartiniere (131) has shown that DES,
genistein, and o,p'-DDT administered to
Sprague-Dawley female rats resulted in
enhanced epithelial cell proliferation and
differentiation of abdominal mammary
glands. TCDD was inhibitory, and Aroclor
1221 and 1254 showed no significant cell
proliferation increases. Other reports indi-
cate that the herbicide atrazine induces
mammary gland tumors in Sprague-Dawley
female rats (79,132).
A recent publication has appeared

indicating that approximately 75% of the
current incidence of human breast cancer in
the United States is attributable to past expo-
sures of ionizing radiation (133). Whether
this hypothesis holds up to scientific scrutiny
has yet to be determined.

Toxicity Testing in Animals and
Extrapolation to Humans. The study of
chemically induced carcinogenesis of the
mammary gland has been difficult and
slow. With an increased number ofwomen
entering the workplace in recent years, the
opportunities have increased for exposure
of women to potentially hazardous chemi-
cals.One explanation for the slow progress
in studying risk in women is the lack of
appropriate, biologically based animal
models for understanding mechanisms by
which toxicants interact with female repro-
ductive target tissues and the resulting
health effects that follow exposure.
A complicating factor in animal testing

programs for predicting human breast
cancer is the variability in susceptibility to
chemical carcinogens among rodent strains.
For example, Sprague-Dawley rats have high
spontaneous rates of mammary tumors,
whereas Fischer, ACI, and Copenhagen
strains exhibit lower rates of mammary
gland tumors (134). Independent investiga-
tors have used a wide variety of rodent
strains in evaluating chemically induced car-
cinogenesis of the mammary gland. This
fact makes interpretation of past data diffi-
cult when comparing data and extrapolating
across species and strains. One pertinent
report found that one of the triazine herbi-
cides (atrazine) induces mammary gland
tumors in Sprague-Dawley female rats but
not in Fischer 344 rats (132).

Evaluation of chemicals in laboratory
rodents has been the cornerstone of the

National Toxicology Program (NTP) for
identifying those chemicals most likely to
cause cancer in humans. The species most
often used by the NTP are the inbred
Fischer 344 rat and the hybrid B6C3F,
mouse (135). Recently, Dunnick et al.
(136) have reviewed the NTP's chemically
induced mammary gland carcinogenesis
rodent studies. Out of 450 chemicals
tested, 34 cause mammary gland neo-
plasms. Of these, 29 chemicals are positive
in female rats; 4 of the 29 cause mammary
gland neoplasms in both male and female
rats and mice. These four chemicals are 1,2-
dibromoethane, 1,2-dichloroethane, glyci-
dol, and sulfallate, all genotoxic chemicals.
The finding of mammary gland tumors in
male rodents is notable because the occur-
rence of breast cancer in human males is a
rare phenomenon. Six other chemicals
(benzene, 1,3-butadiene, dichlorvos, ethyl-
ene oxide, methylene chloride, and nitro-
furazone) cause mammary gland neoplasms
in female mice (135). It should be kept in
mind that the above 2-year cancer studies
do not include pregnancy and lactation in
their experimental design, which can
influence expression of mammary gland
carcinogenesis (137).

In addition to strain differences, current
testing paradigms in laboratory rodents for
mammary carcinogenesis may not be ade-
quate for predicting whether a chemical
agent is a human mammary gland carcino-
gen. Evidence for this comes from a num-
ber of studies demonstrating differences in
mechanism(s) of mammary tumor develop-
ment between species. For example, in high
incidence strains for developing mammary
gland tumors, nulliparous mice develop
fewer mammary gland tumors than multi-
parous mice (138,139). However, in
humans, full-term pregnancy followed by
lactation reduces the risk of breast cancer.
Furthermore, with few exceptions, spon-
taneous mammary adenocarcinomas in rats
and mice are rare and fail to metastasize to
distant organ sites (140). Whether this is
due to the presence of tumor suppressor
factors or some other mechanism is worthy
of study. This lack of metastasis in rodents
is quite different from that seen in human
populations, where undifferentiated breast
cancer cells can take up residence in bone,
liver, brain, and lung and thereby con-
tribute to the high mortality seen in clinical
situations. In addition to differences in
metastatic capability, routine chronic test-
ing and two-generation reproductive
studies in laboratory animals are done at
high doses and in homogeneous animal

populations. These doses usually are con-
siderably higher than the concentrations
likely to be experienced by human popula-
tions, which exhibit varied genetic hetero-
geneity. Furthermore, there is in vitro
evidence that interspecies differences exist
in metabolizing toxicants. For example,
human and rat mammary gland cocultures
with V-79 cells respond differently to
mutagenic PAHs (benzo[a]pyrene and
7,12-dimethylbenz[a]anthracene) (141).

Conclusions. Given the sparse human
epidemiologic data on the association
between organochlorines, PAHs, and PCB
exposures and human breast cancer, it is
not possible to attribute to them a cause
and effect at this time (62,142). Further
epidemiologic investigations in geographic
regions with elevated breast cancer inci-
dences, e.g., Long Island, New York, are
needed as well as complementary mecha-
nistic studies in appropriate and predictive
laboratory animals.

Male Reproductive System Effects.
BACKGROUND. Abnormality in the expres-
sion of the genome or interference with the
action of gene products as well as accelera-
tion of the rate of cell division can be
induced in male reproductive organs by
chemicals having endocrine activity.
Because the male reproductive endocrine
system involves components from the
hypothalamus and pituitary as well as the
testes, opportunities for disruption exist at
multiple levels and with a variety of types
of endocrine action. Of particular impor-
tance are chemicals with the ability to
affect testosterone production directly or
by influencing the control of gonadotropin
production. Thus, chemicals with estro-
genic, antiandrogenic, or Ah receptor-
binding activity are primary suspects, as are
chemicals that influence the synthesis or
release of FSH, LH, or prolactin. Included
are chemicals that interfere with hormone
receptor synthesis or function. Athough
the adult male reproductive system can be
affected adversely by disruption of the
endocrine balance, the developing male
reproductive system pre- and postnatally
appears to be particularly susceptible and
uniquely sensitive. For that reason, this
discussion focuses on developmentally
induced effects.

Very early embryos have the potential to
develop either a female or a male repro-
ductive system. In mammals, including
humans, development of the male pheno-
type requires activation of the SRY gene on
the Y chromosome. In the absence of expres-
sion of that gene, the female phenotype
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develops. The mechanisms of action of the
SRY gene product have not been eluci-
dated fully, but a cascade of events is initi-
ated. These events have been reviewed by
George and Wilson (143) and Byskov and
Hoyer (144), and their descriptions are
summarized below.

The embryonic gonads are formed by
migration of primordial germ cells (gono-
cytes) to the urogenital ridge of the meso-
nephric kidneys where they and other
somatic cells from the urogenital ridge form
a gonadal ridge. Somatic cells from the uro-
genital ridge include precursors of Sertoli
and Leydig cells. This process begins early
in week 4 of gestation in humans, and the
migration is completed during week 5.
During week 6, the first morphologic sign
of male sexual differentiation is seen when
somatic cells (primordial Sertoli cells) in the
gonadal ridge form spermatogenic cords.

Before this time, the sexually undiffer-
entiated fetus has formed two paired ducts
called the Wolffian duct and the Mullerian
duct. These ducts terminate in a structure
called the urogenital sinus. Before 8 weeks
of gestation, these internal structures as
well as the external genitalia of genetic
males and females are indistinguishable
morphologically. During week 8 in the
male, the Mullerian ducts begin to regress
because of the action of anti-Mullerian
hormone (AMH) produced by the primor-
dial Sertoli cells. Completion of this regres-
sion is essential for formation of normal
phenotypic males. Following Mullerian
duct regression, the Wolffian ducts form
the epididymis, vas deferens, and seminal
vesicles. The urogenital sinus forms the
prostate gland as well as the bladder and
initial urethra. Simultaneously, the external
genitalia develop to form the penis, includ-
ing the penile urethra, and scrotum. With
the exception of Mullerian duct regression,
these sexual differentiation events are
under the control of testosterone produced
by the fetal Leydig cells. Testosterone is
also necessary for completion of Mullerian
duct regression but is ineffective without
AMH. Target cell responses to testosterone
(and dihydrotestosterone) are mediated via
the androgen receptor (AR).

During the latter two-thirds of human
gestation, important events indude develop-
ment of the testes, development of the penis,
and migration and descent of the testes into
the scrotum. During that period and postna-
tally, testis development continues with pro-
liferation of gonocytes, Sertoli cells, and
Leydig cells. These processes all require
testosterone and/or dihydrotestosterone

(produced from testosterone) and normal
AR function to proceed normally.

Thus, two hormones have been identi-
fied that are directly involved in differ-
entiation and development of the male
reproductive tract. These are AMH and
testosterone. Interference with AMH
expression or action results in failure of the
Mullerian ducts to regress and presence of
rudimentary components of the female
reproductive tract in otherwise phenotypic
males, that is, a pseudohermaphrodite con-
dition. Interference with production or
action of testosterone affects the male
reproductive tract in general. Depending
on the extent of that interference, conse-
quences are complete or partial failure of
the male reproductive system to develop.
Variation in the timing of interference
could cause differential effects (145).
Effects observed include the following:
* Incomplete development of the external

and internal genitalia, including an
underdeveloped penis (hypospadia or
microphallus). These conditions can
preclude copulation.

* Failure of the testes to descend into the
scrotum (cryptorchidism). Cryptor-
chidism in humans is associated with
increased incidence of testicular cancer
(146) and impaired spermatogenesis.

* Incomplete proliferation or maturation
of gonocytes (precursor cells of sperm)
and/or Sertoli cells that would result in
reduced capability to produce sperm. It
has been suggested, but not proved,
that the presence of fetal germ cells in
postpubertal testes could be the origin
of germ cell tumors that develop in
young men (147).

* Incomplete proliferation of Leydig cells
or interference with Leydig cell func-
tion that could limit androgen produc-
tion, delay or prevent onset of puberty,
and affect sexual behavior in adults.
INFLUENCE OF HORMONES ON THE

MAMMALIAN MALE REPRODUCTIVE
SYSTEM. The action of androgens, mediated
via the AR, is essential for normal develop-
ment of the mammalian male reproductive
system. Under normal physiological condi-
tions, testosterone and dihydrotestosterone
are the primary androgens that activate the
AR. Three classes of chemicals that have
been shown to influence androgen levels
when administered during the developmen-
tal period are of particular concern. Those
are chemicals having antagonistic properties
with the AR (antiandrogens), those that
interact with the estrogen receptor, and
those that interact with the Ah receptor.

Antiandrogens. Chemicals that can bind
to the AR without activating it, and simul-
taneously prevent binding of true andro-
gens, are called antiandrogens. Examples of
antiandrogens are the pharmaceutical
hydroxyflutamide, the pesticides procymi-
done (148) and vinclozolin (27), and the
DDT metabolite p,p'-DDE (50,51). o,p'-
DDT has weak estrogenic activity. The
recognition that the major metabolite is an
antiandrogen introduces another mecha-
nism for the effects of DDT. Also, in addi-
tion to their high affinity for the estrogen
receptor, estradiol and DES have affinity
for the AR (50,51). Therefore, it is possi-
ble that the mechanism by which estro-
genic chemicals impair development of the
male reproductive system may be via
antiandrogenic properties rather than or in
addition to activity related to estrogen
receptor activation. Other compounds
with estrogenic activity that have the abil-
ity to affect the male reproductive system
adversely, e.g., chlordecone and methoxy-
chlor (149), have not been investigated for
antiandrogenic properties.

Failure to activate the AR because of
low androgen levels or antiandrogen activ-
ity would produce results similar to the less
severe alterations seen in individuals with
defective ARs. The range of those effects is
seen clearly in human 46,XY genetic males
who have defects in the AR (androgen
insensitivity syndrome [AIS]). AIS in
humans has been reviewed by Quigley et
al. (150). As discussed below, similar
effects have been observed in genotypic
males exposed prenatally to DES.

An example of an environmental chem-
ical that has antiandrogenic properties is
the fungicide vinclozolin. Gray et al. (27)
administered vinclozolin to pregnant rats
from gestation day 14 to postnatal day 3.
Male offspring had a variety of reproduc-
tive effects characteristic of interference
with AR action. Effects observed included
reduction of anogenital distance to that
characteristic of females, impaired penis
development, existence of vaginal pouches,
prostate gland agenesis, delayed preputial
separation, and reduced or absent sperm
production as judged by seminiferous
tubule atrophy.

Estrogens. A series of papers and reports
have appeared indicating that the human
male reproductive system, as well as that of
certain wildlife species, has been compro-
mised seriously in recent decades. Reported
effects, which have included reduced sperm
production, improper development of the
penis, cryptorchidism, and testicular
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tumors, are described in a report commis-
sioned by the Danish Environmental
Protection Agency (33). It is hypothesized
that these effects are due to exposure in utero
to exogenous chemicals with estrogenic
activity (19,151). Sharpe et al. (152) have
produced reductions in rat testicular weight
and sperm production rate with relatively
high exposure levels of the estrogenic envi-
ronmental chemicals octyphenol, octyphenol
phenoxylate, and butyl benzyl phthalate as
well as DES. Evidence that human male
reproduction has been compromised is
summarized and evaluated below.
A report by Carlsen et al. (23) described

the results of a meta-analysis of human
semen studies published between 1938 and
1991. Published data from a total of 61
studies were evaluated. Those studies were
conducted in several different countries and
examined differing and often selected popu-
lations of men. The report concluded that
human sperm production had declined by
approximately 50% over that period. The
investigators' calculations, which were
derived from combining studies, suggested
that a decline in mean sperm concentration
from 113 x 106 to 66x 106 sperm per ml of
semen was accompanied by a mean ejaculate
volume decline from 3.4 to 2.75 ml over
that period of approximately 50 years. The
authors concluded that there was no obvi-
ous, valid reason to believe that human
sperm production had not dedined, but they
acknowledged that no basis existed in those
data to demonstrate that the downward
trend was continuing.

The conclusions reached by Carlsen et
al. (23) and subsequent publications from
that group have been challenged on two
fronts. The first is whether an actual
decline occurred and if so, whether the
decline was limited to the period prior to
1970. The second is whether such an effect
on sperm production might actually have
been caused in humans by exogenous
agents with estrogenic activity.

Issues raised regarding the conclusion
that sperm production has declined include
the following:
* Validity of comparing results obtained

from different populations ofmen from
different geographic areas and different
times (153,154). Of particular concern
is the fact that a large majority of men
in the different studies were from
selected populations that included pre-
sumed fertile men presenting for vasec-
tomies, male partners in infertile
couples, and volunteer semen donors
for artificial insemination procedures.

The analysis also has been challenged on
the basis ofwhether the criteria for inclu-
sion in the studies might have changed
because of a change in World Health
Organization criteria for judging sperm
count to be inadequate for normal fertil-
ity (155). It is not clear that this latter
criticism is valid, but the challenge has
not been refuted effectively (156).

* Lack of control for abstinence time
before provision of the semen sample
(153). Increasing abstinence interval
results generally in increasing sperm
concentration and volume of ejaculates.
A systematic decrease in abstinence
interval could explain much of the pur-
ported decrease in sperm concentration
and semen volume.

* Limitations in amount of data prior to
1970 and use of a linear regression
approach to describe the behavior of
the combined data. As indicated by
Olsen et al. (154), only 12% of the
total subjects in the meta-analysis were
in the first 30 years. Thus, the studies
from which the higher baseline of
sperm count was determined do not
form a robust base. Also, application of
more sophisticated approaches to mod-
eling of the data indicates that a stair-
step procedure is more appropriate.
Stair-step modeling with the combined
data yields results that indicate that
sperm count dropped between the
group of studies prior to 1970 com-
pared to those after 1970 but also indi-
cates that from 1970 to 1990, sperm
count held steady or possibly increased.
It must be recognized that such model-
ing only describes the behavior of the
data mathematically and does not
address biological plausibility.
Evidence from other sources for a general

decline in sperm production is conflicting.
Auger et al. (157) examined the sperm
count and semen volume of first ejaculates
provided by healthy fertile men volunteering
as semen donors at Auger's Paris dinic from
1973 to 1992. Declines in sperm count
(89 x 106 to 60x 106) were reported during
that interval. However, the researchers did
not find a decline in semen volume. Irvine
et al. (158) and Ginsburg et al. (159)
reported similar results. On the other
hand, comparison of several studies pub-
lished between 1958 and 1992 (160) sup-
ports a concept that no decrease in sperm
count or semen volume occurred in
Finnish men. Also, MacLeod and Wang
(161), whose laboratory in New York
provided a large proportion of the men

included in the Carlsen et al. (23) meta-
analysis for the pre-1970 period, concluded
that sperm concentration or semen volume
had not changed in an equivalent popula-
tion of men 20 years later. Further, Fisch
et al. (162) and Paulsen et al. (163) found
no change in semen parameters at multiple
locations in the United States, including
New York. It should be recognized that all
of these studies were done on selected pop-
ulations. Thus, although there may be
reductions in sperm production in some
locations, available data do not support the
concept that there has been a general
reduction. Because of the limitations in
virtually all of the data, the conclusions
should be viewed as tenuous.

Important information on the ability of
exogenous estrogenic chemicals to disrupt
human male reproductive system develop-
ment is available from accounts of maternal
exposures to DES. Particularly important
are two papers describing effects on male
offspring resulting from pregnancies during
which women were treated with DES
(24,164). Those women participated in a
controlled clinical trial (the Chicago Lying-
In Study) to examine effects of DES given
to prevent loss of pregnancy. DES was
given in daily doses that increased from 5
mg during the seventh week of pregnancy
to a maximum of 150 mg by week 34.
Women began receiving DES between
weeks 7 and 20, and the period in gesta-
tion at which treatment was initiated was
therefore not constant. Controls were given
placebos. The male offspring exposed to
DES in utero had increased incidence of
genital malformations, including epididy-
mal cysts (nonmalignant; 21 vs 5% for
controls) and testicular abnormalities (11
vs 3%) that included small (hypoplastic)
testes, and microphallus (24). A history of
cryptorchidism was found in 17 of the 26
exposed men with hypoplastic testes com-
pared to 1 of 6 placebo-exposed men with
hypoplastic testes (out of 308 and 307
men, respectively). Because incidence of
cryptorchidism was reported only for men
with hypoplastic testes, definitive conclu-
sions cannot be drawn about the incidence
of cryptorchidism in the overall population
of DES-exposed men. Overall incidence of
reproductive tract abnormality (one or
more major or minor abnormalities) was
32% in DES-exposed men and 8% in con-
trols. Average sperm concentration in ejac-
ulates from 134 of the DES-exposed men
was 91 X 106 vs 115X 106 for 87 nonex-
posed controls. Most, if not all, of that sig-
nificant decrease was probably attributable
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to the higher incidence of exposed men
with hypoplastic testes. However, when the
same population was recontacted at 38 to
41 years of age, no indication was found of
a decrease in fertility among these men
(164). No report has indicated an increase
in testicular cancer in this population.

In considering these results, it is impor-
tant to note that DES is a potent synthetic
estrogen that also has antiandrogen proper-
ties. With exposure in utero to relatively
high levels of a potent exogenous estrogen,
about one-third of the men recontacted
have clinically detectable reproductive sys-
tem effects. The types of effects observed
are consistent with those that would be
predicted from studies with rodents, but
men appear to be less sensitive. Except as
might occur from nursing, there was no
postnatal DES exposure.

Ah Receptor Agonists. A group of
halogenated aromatic hydrocarbons that
cause male reproductive effects have the
common property that they can activate the
Ah receptor (165). Where comparable, the
effects on the male reproductive system are
similar. The male reproductive effects of
dioxin (TCDD) are presented as an exam-
ple. These effects have been reviewed by
Peterson et al. (166), and their review of
these effects is summarized.

Dioxin causes effects on the developing
male reproductive system in rodents at
lower doses than those causing effects on
adult males. The effects induced during
development appear to result from the abil-
ity of dioxin to impair testosterone synthe-
sis, although impairment of CNS sexual
differentiation also could be involved. The
low androgen level is not accompanied by
increased LH levels, indicating impairment
of the feedback mechanism for control of
LH synthesis and release. Observed effects
include decreased anogenital distance,
delayed testis descent, impaired spermato-
genic function, decreased accessory sex
gland weights, and feminization of male
sexual behavior. Recent work by Gray et al.
(167) has basically confirmed these results
with dioxin and expanded them using
more extended dosing during the period of
organogenesis and over three generations.
In the F, and F2 generations, adverse
effects on male fertility were seen at doses
(dietary) as low as 0.01 g/kg/day.

TESTICULAR CANCER. Germ Cell
Tumors. A substantial body of evidence has
accumulated indicating that the incidence of
testicular cancer in men has increased signif-
icantly. The tumors are primarily germ cell
in origin. Those data have been summarized

by Toppari et al. (33). Salient features of
the data include the following conclusions:

Toppari et al. (33) estimated that cancer
incidence in men under age 50 has increased
approximately 2 to 4% per annum since the
1960s in Great Britain, the Nordic and
Baltic countries, Australia, New Zealand,
and the United States. In Denmark, which
appears to have the highest incidence, the
lifetime risk of contracting testicular cancer
approaches 1%.

There are marked differences in inci-
dence levels between countries and between
races. In the United States, whites appear to
have a higher incidence than blacks.
Testicular cancer is the most common
malignancy among men age 25 to 34, with
age-specific incidence as high as approxi-
mately 25 per 105 in Denmark (168).
Interestingly, the corresponding incidence
in Finland is about 5 per 105. The reason
for this difference is not known. Most of
the tumors occurring in young men are
germ cell in origin.

Cryptorchidism is associated with no
more than 10% of testis cancer cases (169).
The cause of the apparent increased inci-
dence of testicular cancer is unknown, but
it has been speculated that disruption of the
male endocrine system during development
may be involved. That speculation is fueled
by the appearance of immature germ cell
forms in testes of some men with testicular
cancer (147), a demonstrated association
between cryptorchidism and testicular
cancer, and the predominance of testicular
cancer incidence in young men. However,
Gill et al. (24) reported that none of the
DES-exposed men from the Chicago
Lying-In Study who were contacted
approximately 25 years later had contracted
testicular cancer. While Wilcox et al. (164)
did not report on the incidence of testicular
cancer in those same men when recontacted
at age 38 to 41, Wilcox (personal commu-
nication) has stated that there were no cases
of testicular cancer in either the exposed or
unexposed men who were contacted. By 38
to 41 years of age that cohort was suffi-
ciently old to have developed testicular
cancer if they were at increased risk,
although the number of men in this study
was small. These data are in accord with
those of the Danish report (33).

Leydig Cell Hyperplasia and Tumors.
Leydig cells are contained in the interstitial
spaces between seminiferous tubules in the
testis. They are responsive to LH and are
the primary source of testosterone in males.
A number of chemicals have been shown
to increase the incidence of Leydig cell

hyperplasia and adenomas in chronic toxic-
ity studies with rodents. Although some
Leydig cell tumorigens also have mutagenic
properties, many do not. The demonstra-
tion of nongenotoxic bases for Leydig cell
hyperplasia and adenomas in test animals
and the apparently greater susceptibility of
test species to these lesions has made their
relevance for human risk unclear.

A workshop (31) was convened to
review the available information on Leydig
cell hyperplasia and adenomas and to reach
consensus about the relevance of test ani-
mal results for human risk assessment.
Apparent incidence is rare and restricted
primarily to white males. Comparisons
with incidence in test species are tenuous
because the diagnosis in test animals is
from a combination of gross observation
and histological examination, and in
humans is from palpation in selected popu-
lations. However, available data suggest a
difference in the relative susceptibility of
humans to Leydig cell tumorigenesis.
Because uncertainties exist about the true
incidence in humans, induction of Leydig
cell adenomas in test species is of concern
under some conditions. The work group
focused on seven hormonal modes of
induction of which two, GnRH agonism
and dopamine agonism, were considered
not relevant to humans. AR antagonism,
5ct-reductase inhibition, testosterone
biosynthesis inhibition, aromatase inhibi-
tion, and estrogen agonism were consid-
ered to be relevant or potentially relevant
but quantitative differences for these
modes of induction may exist across
species. Occurrence of Leydig cell hyper-
plasia alone in test species was not consid-
ered to constitute a cause for concern in a
risk assessment for carcinogenic potential,
but early occurrence could indicate a need
for additional testing. Occurrence of
Leydig cell adenomas in test species was of
concern as both a carcinogenic and repro-
ductive effect if the mode of induction and
potential exposures could not be ruled out
as relevant for humans.

CONCLUSIONS. Convincing evidence
exists in rodents that exposure to chemicals
that have estrogenic activity, reduce andro-
gen level, or otherwise interfere with the
action of androgen during development
can cause male reproductive system abnor-
malities that include reduced sperm pro-
duction capability and reproductive tract
abnormalities. The type of abnormality
observed depends on the developmental
period during which the disruption of the
normal endocrine balance occurred and the
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extent of the disruption. Results obtained
from observation of men exposed to DES
in utero provide data on the potential of
exogenous estrogens to disrupt the repro-
ductive system during development in
human males. These data demonstrate
that male reproductive tract anomalies are
produced by DES but in a limited propor-
tion of the men and not at a level of sever-
ity that would be predicted from studies
with mice that typically might receive
doses of 100 pg/kg (170). The data indi-
cate that there is a decrease in sperm pro-
duction that may be limited to men with
other effects as well (i.e., cryptorchidism
and/or hypoplastic testes). There is no evi-
dence that fertility was reduced in that
population of men. The level of estrogenic
activity to which the men in the DES
study were exposed was very high, but lev-
els early in gestation were substantially
lower than levels in late gestation and not
all women were given DES in early gesta-
tion. Therefore, it is not possible to state
with certainty that the effects observed
were caused by the lower levels of exposure
rather than by the higher levels experi-
enced during late gestation. Occupational
exposure to Kepone was reported to cause
oligospermia in men, an effect that was
presumed due to the estrogenic activity of
that agent (171).

Until recently, the emphasis with respect
to disruption of the male endocrine system
by environmental agents has been on chem-
icals with estrogenic activity. It has been
known for some time from work with test
species, and to a lesser extent with human
males, that chemicals with antiandrogenic
activity also can disrupt the male reproduc-
tive system. The recent revelations that
agents such as estradiol and DES, as well as
the DDT metabolite DDE, also have
antiandrogenic activity place significantly
increased importance on that mechanism of
action. It is quite possible that the effects
attributed to estrogenic activity are due to
antiandrogenic activity instead of or in
addition to estrogenic activity. Therefore, it
is important that testing for endocrine-
disrupting potential of environmental
chemicals include the ability to detect
antiandrogenic activity in addition to estro-
genic activity. Testing also should be able to
detect alteration in AR function as reflected
in genome expression.

Controversy persists about the allegation
that human sperm production has decreased
over the past 50 years. However, the firm
data indicating an increase in human testic-
ular cancer, as well as apparent occurrence

of other plausibly related effects, support
the concept that adverse effects have
occurred or still exist.

PROSTATE CANCER. Background.
Carcinoma of the prostate, an androgen-
dependent organ, is the second leading
cause of cancer deaths in males in the
United States and remains incurable once
it has metastasized. An estimated 200,000
new cases were diagnosed in the United
States during 1994, along with about
40,000 deaths (172). Increased incidence
of prostate cancer in recent years is due in
large part to increased detection screening
(digital rectal examination and serum
prostate specific antigen) in men over 50
years of age (173). Death due to prostate
cancer has increased 17% over the past 30
years despite improved diagnosis. Cancer
of the prostate is a disease of men over 50
years of age , with about 1 in 10 develop-
ing the disease by age 85. There are racial
differences in susceptibility. Prevalence of
the disease is rare among Orientals, 20 to
30 times higher in Caucasians, and even
higher in African-American males (40%
higher than among whites).

Little is known about the causes of
prostatic cancer, but age, genetics, endo-
crine status, diet, and environmental risk
factors have been proposed. Apparendy, no
causative association between smoking,
alcohol, coffee, tea, or caffeine consump-
tion and human prostate cancer has been
found (174-176). Serum concentrations of
gonadotropins (FSH and LH), testosterone,
androstenedione, estradiol, and SHBG are
not good predictors of risk (177). Intake of
dietary fat appears to be a risk factor in
some studies (178,179). However, a recent
case-control study in Sweden failed to find
an association between diet during child-
hood and prostate cancer risk (180).
Controversy also exists concerning the risk
of prostate cancer following vasectomy.

The possible role of chemical exposure
and endocrine disruption as a contributing
factor in the etiology of adenocarcinoma of
the prostate must be considered. In a retro-
spective cohort epidemiology study of
Canadian farmers linked to the Canadian
National Mortality Database, a weak but
statistically significant association (rate
ratio = 1.19, 95% confidence interval
= 0.98-1.45) between acres sprayed with
herbicides and prostate cancer deaths was
found (181). In a 30-year follow-up study
of coke-oven workers, an association of
coke-oven emissions with significant excess
mortality from cancer of the prostate has
been observed (182).

End points of chemically induced
carcinogenesis in animal models include
incidence, tumor number, and latency
(time to tumor). Shirai et al. (183) studied
N-hydroxy-3,2'-dimethyl-4-amino
biphenyl (N-OH-DMAB) induction of
prostate carcinogenesis in rats. Groups of
Fischer 344 rats were administered
biweekly intraperitoneal injections of N-
OH-DMAB at doses of 5, 10, or 20 mg/kg
bw or of DMAB, the parent compound, at
a dose of 25 mg/kg bw, for a total of 10
doses. Prostate carcinomas in the ventral
lobe developed in an N-OH-DMAB dose-
dependent manner (0, 17.6, and 66.7%,
respectively), with limited tumor yields in
other organs.

There is some evidence for a role of the
heavy metal cadmium in prostate cancer
etiology in some epidemiology and animal
studies (184).

Toxicity Testing in Animals and
Extrapolation to Humans. Research on the
etiology of prostate cancer has been hin-
dered by the lack of suitable animal models
for study. The development and validation
of animal models for testing xenobiotic
chemicals that can predict risk for human
adenocarcinoma of the prostate are essen-
tial. In contrast to its frequent occurrence
in humans, prostate cancer is rare in labora-
tory rodents. Therefore, to make this dis-
ease more amenable for study, there is a
growing effort to identify or develop a
means to target carcinogenesis in the
prostate gland of rodents. This goal is being
approached with the use of three different
methods. One method takes advantage of
the unique androgenic hormone require-
ment for prostate growth to exaggerate the
effects of carcinogens at that site, and two
methods, recombinant retrovirus transduc-
tion prior to organ reconstitution and
transgenic targeting, allow direct genetic
manipulation of cells in the prostate gland
leading to the development of prostatic
malignancy (185).

Short-term treatment of rats with
chemical carcinogens produces a low inci-
dence (5 to 15%) of prostate cancer, pro-
vided that prostatic cell proliferation is
enhanced during carcinogen exposure.
Chronic treatment with testosterone also
induces a low prostate carcinoma incidence.
A high carcinoma incidence can be pro-
duced only by chronic treatment with
testosterone following administration of
carcinogens such as N-methyl-N-nitro-
sourea (MNU) and DMAB. Testosterone
markedly enhances prostate carcinogenesis
even at doses that do not measurably
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increase circulating testosterone. Thus, testo-
sterone is a strong tumor promoter for the
rat prostate.

Transgenic mouse models for prostate
cancer have been developed, inserting the
mouse int-2 or the rat prostatic steroid-
binding protein C3( 1) genes, respectively
(186,187). These models offer the oppor-
tunity of studying hormone response
elements in vivo and the multistage progres-
sion of adenocarcinoma of the prostate.
Another promising model for human
prostate cancer metastasis employs the
orthotopic (but not ectopic) implantation
of human prostate cells (PC-3M and
LNCaP) in BALB/c nude mice (188). The
transplantation of human prostatic carci-
noma cells in nude mice is enhanced when
injected in Matrigel (189). A review of
animal models for the study of prostate
carcinogenesis has been published (190).

Conclusions. Currently, the weight of
available evidence linking herbicides or
PAHs to prostate cancer is weak, and more
epidemiologic and animal research is
required before assigning a specific endocrine
disruption (or any other) mechanism as a
specific cause of human adenocarcinoma of
the prostate.

Hypothalamus and Pituitary. The
CNS plays a major role in integrating hor-
monal and behavioral activity. Disturbances
in these finely coordinated mechanisms can
severely impair normal adaptive behavior
and reproduction. During development
and in adult life, the brain is a target tissue
for the action of gonadal hormones.
Similarly, hormones regulate many behav-
ioral activities and vice versa (e.g., epineph-
rine prepares the "fight-or-flight" response;
suckling releases oxytocin).

MAMMALIAN DEVELOPMENT. The
developing nervous system is particularly
sensitive to hormones and insult by drugs
and environmental chemicals; the specific
processes of sexual differentiation of the
brain represent an excellent example of
this sensitivity. In rodents, sexual differen-
tiation of the CNS can be modified by
experimental hormone treatments admin-
istered shortly before or shortly after birth.
In contrast, differentiation of the gonads
and reproductive tract occurs earlier in
gestation. Before gender differentiation,
the brain is inherently female or at least
bipotential (191). Thus, the functional
and structural sex differences in the CNS
are not due directly to sex differences in
neuronal genomic expression but rather
are imposed or imprinted by the gonadal
steroid environment during development.

In the CNS, testosterone is metabolized
to both estradiol and dihydrotestosterone
(DHT). In the rat, mouse and hamster, the
aromatization of testosterone to estradiol is
responsible for CNS sex differentiation,
whereas in certain other mammals (e.g.,
rhesus monkey) the DHT pathway appears
to be essential (192). In humans, the role
of estrogens in CNS sexual differentiation
remains uncertain.

If one administers exogenous steroids
(i.e., testosterone propionate) to the geno-
typic female rodent within the first week of
postnatal life, her neuroendocrine system
will differentiate phenotypically male (i.e.,
her brain is masculinized). Such masculin-
ization of the female brain by the aromati-
zation of testosterone to estrogen in the
brain also is reflected in similar masculiniz-
ing effects observed with low doses of
estrogen or DES, treatments without effect
on the genotypic male. This masculinized
female does not ovulate, has polyfollicular
ovaries, displays persistent vaginal estrus,
does not show positive feedback to gonadal
hormones (i.e., an ovulatory surge of LH
cannot be stimulated), and exhibits sexual
behavior more typical of that observed in
the genetic male. In contrast, the opposite
is seen following castration in early postna-
tal life. Removal of the ovaries from the
neonate is without major effect on sexual
differentiation of the female rodent brain.
However, if the testes are removed before
the third postnatal day of life, this male at
adulthood exhibits neuroendocrine char-
acteristics typical of the female, including
both the ability to release a cyclical surge of
LH and to exhibit feminine lordotic
(posture in the female of reproductive recep-
tivity) behavior. The timing of these impor-
tant developmental endocrine events
responsible for sexual differentiation of the
human brain remains poorly defined but
appears to occur earlier in fetal development
than in rodents.
A number of organochlorine pesticides,

including Kepone (193), DDT (149),
methoxychlor (76), and the mycoestrogen
zearalenone (194), have been shown to
masculinize female rats. In contrast, pur-
ported antiestrogens, such as tamoxifen
(195), demasculinize the male, including
the size of the sexually dimorphic nucleus of
the preoptic area such that it resembles that
observed in the female. Exposure of
newborn female rats to these xenoestrogens
during the critical periods of sexual differen-
tiation has been shown to perturb reproduc-
tive processes in later life, presumably by
altering the development of the neural

mechanisms regulating gonadotropin secre-
tion. For example, it has been argued that
the sexually dimorphic nucleus varies with
the degree of masculinization induced by
phytoestrogens (196). Phytoestrogens are
naturally occurring nonsteroidal plant
chemicals with estrogen-mimetic properties.

Investigations in the neonatal rat also
indicate that analogs of DDT, i.e., 1-(o-
chlorophenyl)- 1 (p-chlorophenyl)-2,2,2-
trichloroethane (o,p'-DDT), also may have
estrogenic activity at the neuroendocrine
level. Heinrichs et al. (197) found that
female rats given o,p'-DDT as neonates
exhibited advanced puberty (vaginal open-
ing), persistent vaginal estrus after a period
of normal cycling, follicular cysts, and a
reduction in the number of corpora lutea
(anovulation). TCDD administered by gav-
age to pregnant female Long-Evans hooded
and Holtzman rats on gestational day 15 at
1 pg/kg causes a delay in puberty and
incomplete opening of the vaginal orifice in
female offspring (198).

In the male rat, treatment with aro-
matase inhibitors such as fenarimol has
been hypothesized to inhibit normal
masculinization of the brain (35). The
antiandrogen vinclozolin, which acts as an
AR blocker and does not reduce the
aromatization of testosterone to estrogen,
was not found to alter male sexual behav-
ior after perinatal treatment (albeit the
reproductive tract was affected). Although
a hormonal influence on sexual differenti-
ation of the CNS may vary somewhat
among different species, some role for
gonadal hormone modulation of CNS
development has been indicated in most
animals studied.

In summary, sexual differentiation
may be affected by a variety of environ-
mental compounds. Although most
efforts have focused on those compounds
reported to have steroidogenic activity, it
may be premature to assume that other
nonsteroidal compounds are without effect
on sexual differentiation of the brain. The
masculinizing effects of androgens on the
female brain can be partially blocked by
neuroactive drugs such as reserpine and
chlorpromazine; pentobarbital and pheno-
barbital provide more complete protection
against testosterone (199). The mechanisms
through which such interactions occur
remain to be elucidated. These observations
suggest that other mechanisms involved in
sexual differentiation of the CNS may render
this process susceptible to disruption by
environmental compounds that do not nec-
essarily possess steroidogenic activity.
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MULTIPLE CONTROL OF PITUITARY
HORMONES. Synthesis and release of pitu-
itary hormones is under the feedback control
of hormones (e.g., steroids) circulating in the
blood as well as by releasing and inhibiting
hormones or factors manufactured within
specialized neurons located in the hypothala-
mus. The releasing hormones in turn are
regulated by several types of feedback signals
and by multiple nervous influences that
include the classical neurotransmitters (e.g.,
acetylcholine, catecholamines, serotonin)
and several neuropeptides (e.g., opioids,
galanin, neuropeptide-Y) (200). As a result,
it has been demonstrated that many phar-
maceutical agents can modify pituitary hor-
mone secretion. This may be brought about
by direct action on the pituitary by synthetic
steroids (e.g., DES-induced increase in pro-
lactin synthesis) or agents that act on pitu-
itary receptors directly (e.g., bromocryptine
inhibition of prolactin release), or through
compounds that affect neurotransmitter or
neuropeptide regulation of releasing factors.
The effects of various therapeutic agents on
reproductive function are well established.
These drugs may either depress CNS activ-
ity (i.e., anesthetics, analgesics, and tranquil-
izers) or stimulate it (i.e., antidepressants
and hallucinogens). In fact, a variety of such
agents often are used to probe the central
control of neuroendocrine function. Drugs
of abuse also have been shown to alter the
hormonal control of reproduction through a
CNS mechanism.

5-9-tetrahydrocannabinol (6-9-THC),
the major psychoactive component of mari-
juana, significantly reduces LH, FSH, pro-
lactin, and testosterone concentrations in
the blood and causes decrements in sexual
organ weights (201). In the female rat, 6-9-
THC has been shown to suppress serum
gonadotropin secretion, disrupt estrous
cyclicity, and delay sexual development.
Correspondingly, studies in the rhesus
monkey have shown that a single injection
of 6-9-THC produces a longstanding
depression of gonadotropin levels (202). In
humans, similar reports of decreased testos-
terone levels and significant changes in
sperm count and morphology have been
reported, although there is not general
agreement in this regard (202). There is
general consensus that the influence of 6-9-
THC on reproductive function is mediated
through changes in hypothalamic control of
pituitary function. Similarly, opiates also
appear to exert their primary effect on the
hypothalamic-pituitary axis. Such changes
in central regulation of the neuroendocrine
axis result in dysfunction of the gonads and

sex accessory organs in both humans and
laboratory animals.
A number of recent studies have

examined the effect of xenobiotic exposure
on the regulation of the ovulatory surge of
LH in the rat. The timing of this endocrine
event is critical for normal fertilization and
pregnancy. Although there are differences in
ovarian cycle length in rats and humans,
considerable homology exists in these two
spontaneously ovulating species in the CNS-
pituitary mechanisms controlling LH secre-
tion. The generation of the LH surge is
controlled by the pulsatile release of hypo-
thalamic GnRH. This releasing factor is in
turn regulated by hypothalamic neurotrans-
mitters (especially norepinephrine) and opi-
oid peptides (enkephalins) and gonadal
steroids. Agents that disrupt the synthesis of
norepinephrine (e.g., fusaric acid, a-methyl-
p-tyrosine [200]) or agents that interfere
with a-noradrenergic (a-NE) receptor stim-
ulation [e.g., phenoxybenzamine and phen-
tolamine (203,204)] will disrupt the pattern
of GnRH secretion and consequently the
LH surge. Similarly, morphine exerts an
inhibitory effect on LH secretion in the male
and female of several mammalian species [see
Cooper et al. (205) for review]. Goldman et
al. (206,207) have shown that a single
exposure to the formamidine pesticide
chlordimeform can, depending on timing,
inhibit the ovulatory surge of LH and that
this effect is mediated via inhibition of hypo-
thalamic a-NE receptors. Furthermore,
Cooper et al. (208) demonstrated that this
disruption of the LH surge in the female rat
can alter the outcome of the ensuing preg-
nancy (i.e., reduce litter size). The dithio-
carbamates are known to lower CNS
norepinephrine through an inhibition of the
enzyme dopamine-,-hydroxylase, which
synthesizes norepinephrine from dopamine.
Stoker et al. (209) have shown that thiram
(tetramethylthiuram disulfide) also interferes
with the generation of the LH surge, delay-
ing ovulation and altering pregnancy out-
come. This effect on female fertility does not
appear. to be restricted to disruption of nora-
drenergic neurotransmission because
methanol (210) and sodium valproate (208)
have been found to have the same effects on
the LH surge, ovulation, and pregnancy out-
come. Cocaine administered subcutaneously
causes a dose-dependent disruption of
estrous cyclicity, reduced serum LH levels,
and reduction of ovulation in female rats
(211). Valproic acid exerts its effect on
hormone secretion by binding to the
y-aminobutyric acid receptors and mimic-
king the effects of this neurotransmitter in

both the rat and human (212). The mecha-
nism by which methanol alters LH secretion
remains to be determined.

Because steroid hormones have a signifi-
cant role in the regulation of anterior pitu-
itary function, it is not surprising that
xenoestrogens also may modify this influ-
ence on the hypothalamus and pituitary. In
the male, many of the adverse effects of
exposure to xenoestrogens on testicular
function have been attributed to a direct
action on the testes [see Cooper et al. (205)
for review]. However, adverse effects of
estrogens on male reproduction also may be
mediated by a direct action on the hypo-
thalamus and pituitary, tissues that are rich
in estrogen receptors (213). Furthermore,
changes in pituitary hormone secretion
were noted sooner and at lower doses of
DES than those required to alter any testic-
ular measures (214). Doses of methoxy-
chlor that have no detectable effect on
testicular function or reproductive perfor-
mance in the male rat (i.e., 25 and 50
mg/kg/day) elevate serum and pituitary
prolactin levels (215).

Thyroid Effects. BACKGROUND. The
thyroid gland consists of two lobes of
endocrine tissue located just below the
larynx on each side of the trachea. The
function of this organ is to secrete thy-
roid hormones, which are critical for nor-
mal growth and differentiation and are
important regulators of overall metabo-
lism in most tissues. The functions of this
gland are susceptible to insult by dietary
factors, pharmacologic agents, and envi-
ronmental chemicals that may interfere
with thyroid hormone biosynthesis,
transport, or receptor interactions.

The basic precursors of thyroid hormone
biosynthesis are iodide (primarily from
dietary sources) and thyroglobulin (a glyco-
protein found in the thyroid follicular cells).
Iodide must first be taken up from circula-
tion, a process that can be inhibited by a
number of ions such as thiocyanate and per-
chlorate. After the iodide is trapped in the
gland, it is oxidized to hypoiodate, a reaction
mediated by thyroid peroxidase. The active
form of iodide is then coupled to the tyro-
sine residue of the thyroglobulin, resulting in
the formation of monoiodotyrosyl and
diiodotyrosyl residues. Coupling of
monoiodotyrosyl and diiodotyrosyl residues
forms T3, or coupling of two diiodotyrosyl
residues forms T4. T3 and T4 are stored
within thyroglobulin or secreted into the cir-
culation by a proteolytic reaction. T4 is
highly bound to transport proteins, such as
thyroxine-binding globulin (TBG), and
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transthyretin, in circulation and is converted
to T3 (the active form of the hormone that
binds to the thyroid receptor) in peripheral
tissues. Biosynthesis and secretion of thyroid
hormones are under feedback controls of
the hypothalamic (thyrotropin-releasing
hormone[TRH])-pituitary (thyroid-stimu-
lating hormone [TSH])-thyroid axis.
Although a great many compounds disrupt
the synthesis of T3 and T4, with few excep-
tions, they can be classified into three main
groups according to their basic chemical
structure: thionamides (e.g., propylthiouracil
and mercaptoimidazole), aminoheterocyclic
compounds (e.g., sulfonylureas such as
tolbutamide), and substituted phenols (e.g.,
resorcinol and salicylamide). Derivatives of
thiourea, including thiouracils, cause func-
tional hypothyroidism and hypertrophy,
hyperplasia, and hypervascularization of the
gland (216). The thioureas, the amino-
thiazoles, and the mercaptoimidazoles,
which inhibit thyroid hormone formation,
all contain the following configuration in
which R may be a sulfur, oxygen, or
nitrogen atom (41).

/ N-

S=c\R-

The serum carrier proteins TBG and
transthyretin are important to the half-life
and biological activity of thyroid hor-
mones. Humans have both these proteins;
however, rodents lack TBG but have
transthyretin (217). The presence of the
carrier proteins allows larger quantities of
these fat-soluble hormones to be carried in
the blood and delays excretion and metab-
olism of the hormone. They also may play
an important role in the availability of the
hormones for placental transport. Because
some environmental toxicants (e.g., PCBs)
can compete with thyroid hormone for
binding to these carrier proteins, the
toxicants can lower the availability of the
hormone to the tissue (218,219).

Abnormalities of thyroid function are
among the most common of all endocrine
disorders. The two major categories of thy-
roid disease are hyperthyroidism and
hypothyroidism. The altered thyroid state
may lead to a number of physiological
abnormalities, including changes in the
basal metabolic rate (increased in hyperthy-
roidism, and decreased in hypothy-
roidism); lipid metabolism (lipemia,
hypercholesterolemia, and fatty infiltration
of the liver in hypothyroidism and a

decrease in serum cholesterol in hyperthy-
roidism); cardiovascular functions; gas-
trointestinal functions, especially food
intake and energy expenditure as well as
alterations in gastric motility and absorp-
tion (i.e., glucose uptake); and muscle
function (220).

Although thyroid hormones play key
roles in the maintenance of homeostasis,
they are particularly important to processes
involving growth and development. The
most striking effects of these hormones are
observed during maturation of the brain.
The absence of thyroid hormones during
this period produces multiple morphologic
and biochemical alterations and in humans
leads to irreversible mental retardation.
Conversely, a pattern of accelerated matu-
ration is associated with hyperthyroidism,
although these changes should not be
viewed as beneficial as they invariably lead
to neurochemical and behavioral deficits.
Data are sparse for humans, but it is
known that the period between the end of
the first trimester of gestation and 6
months after birth is the period of active
neurogenesis and the most active phase of
the brain growth spurt. The brain is partic-
ularly vulnerable to various insults during
this period. Specific receptors for T3 exist
both in the cerebrum and cerebellum, are
present at a higher concentration at an
early age, and are preferentially found in
neuronal cells with regional differences in
their distribution. Most of the biochemical
effects of hypothyroidism become irre-
versible if replacement therapy is delayed
until after the critical period of develop-
ment, which in rats usually spans the first
10 to 14 days after birth (221). Experi-
mental perinatal hypothyroidism, in which
circulating T4 was virtually eliminated by
drug treatment (e.g., propylthiouracil
[PTU], methimazole) or surgery, is associ-
ated with overall growth retardation,
delayed morphologic and neurochemical
development of the brain with attendant
deficits in neurobehavioral maturation,
malformations of the organ of Corti and
auditory dysfunction (222-224), alter-
ations of the peripheral nervous system,
and developmental delays in eye opening
and weaning (217).

Numerous environmental agents have
been reported to alter thyroid hormone lev-
els in humans, wildlife animals, and labora-
tory animal models. Typically, hypo-
thyroidism is the consequence of exposure
to environmental chemicals (PCB, TCDD,
methoxychlor, thiocarbamide, and sulfon-
amide-based pesticides, to name a few), as

indicated by reduction of thyroid hormones
in circulation, TSH elevation, and thyroid
follicular neoplasia. A partial list of these
compounds from the database of the
Health Effects Division in the Office of
Pesticide Program of the U.S. EPA is
found in Table 1. The putative mecha-
nisms of thyrotoxicity may vary and
include specific damages to the endocrine
gland (e.g., PCB), alterations of hypothala-
mic-pituitary-thyroid axis (e.g., methoxy-
chlor), interferences of hormone transport,
and receptor interactions (e.g., PCB).
Curran and DeGroot (225) have called
attention to the effect of hepatic enzyme-
inducing drugs that metabolize and clear
thyroid hormones from the circulation and
thus alter hormone control mechanisms
(increasing TSH), which could lead to thy-
roid hyperplasia and tumors. Recently, a
mechanistic model of carcinogenic effects
of TCDD on thyroid follicular tissue in
the rat has been demonstrated (46).
Consequently, it should be noted that
environmental agents that produce
hypothyroidism can have potentially
adverse physiological and developmental
impacts on an organism.

Perhaps the most studied examples of
environmental agents that alter thyroid
function are the polyhalogenated biphenyls
(including the polybrominated biphenyls
[PBBs] and PCBs) and the family of chlo-
rinated dibenzo-p-dioxins (TCDD). Both
groups of compounds are present in the
environment, and some PCB contamina-
tion is seen almost everywhere in the
United States. There are multiple forms of
these compounds, and their actions on the

Table 1. Selected chemicals with thyroid activity:
potential to induce thyroid tumors.

Chemical Thyroid tumors Dose level

Alachlor + 126 mg/kg (rats)a
Amitrole + 1.04 mg/kg (rats)
Chlorpropham - 1000 mg/kg (rats)b
Clofentezine + 20 mg/kg (rats)
Ethiozin + 80 mg/kg (rats)
Ethylene thiourea + 4.15 mg/kg (rats)
Maneb *
Mancozeb + 30.90 mg/kg (rats)
Metiram + Varies with species
Metribuzin - 42.2 mg/kg (rats)b
Oryzalin + 135 mg/kg (rats)a
Pentachloronitrobenzene + 50 mg/kg (rats)
Pendimethalin + 213 mg/kg (rats)
Pronamide + 42.59 mg/kg (rats)
Zineb *

+, Positive for thyroid tumors.-, Negative for thyroid
tumors. *, Presumed positive because of ethylene
thiourea; complete data not available. aExceeds maxi-
mum tolerated dose. bHighest dose tested.

Environmental Health Perspectives * Vol 106, Supplement 1 * February 1998 31



CRISP ET AL.

thyroid depend both on the specific form
studied and the dosage of toxin used. Some
forms of these toxicants are quite stable,
and because they are fat soluble, they accu-
mulate in the adipose tissue. They can be
bioconcentrated in the environment, and
fish from contaminated waters can contain
relatively high amounts. The toxicants
cross the placenta and are also concentrated
in milk so that the fetus and newborn can
be exposed by a contaminated mother both
through the placenta and through her milk
(226,227). PCBs, dioxins, and the active
thyroid hormones T4 and T3 show similar
structural properties that appear to be
important in molecular recognition in
biochemical systems (218).

In laboratory animals, manifestations of
thyrotoxicity induced by environmental
agents resemble those produced by drugs
or surgery. For instance, development of
the CNS cholinergic neurons is exquisitely
sensitive to the thyroid status. In rats, peri-
natal exposure to some PCBs (specific con-
geners or mixtures such as Aroclor 1254)
has been shown to lower serum T4 and
reduce choline acetyltransferase (ChAT)
activity (228) in the hippocampus and
basal forebrain. ChAT is an enzyme
involved in the synthesis of acetylcholine, a
neurotransmitter considered important to
learning and memory. T4 replacement was
able to reverse PCB-induced deficits in
ChAT. The particular susceptibility of the
developing peripheral auditory system to
thyroid hormone deprivation is well
known. The onset of evoked cochlear elec-
trical activity (which is postnatal in the rat)
is delayed by hypothyroidism and is
returned to normal by thyroid hormone
administration (223,229). Consistent with
the hypothyroidal effects of PCBs, Aroclor
1254 was found to produce permanent
auditory deficiencies following perinatal
exposure (gestational day 6 to postnatal day
21), in a manner similar to those elicited by
the goitrogenic drug PTU (230,231).

In humans, hypothyroidism has been
linked to occupational exposure to PBBs
(232) and PCBs (233). Many of the symp-
toms of PCB poisoning such as epidermal
abnormalities, fatigue, mental apathy, and
memory deficits are similar to those result-
ing from non-PCB-induced hypothy-
roidism. Accidental exposure to PCBs by
pregnant women in Yu-Chen, Taiwan, led
to a host of delays in physical and mental
development of their offspring similar to
those associated with hypothyroidism
(234,235). These included weight and size
deficits at birth that persisted as the

children matured (a hallmark of hypo-
thyroid effect in animal models) and IQ
deficits. In addition, children born to
women who ate more PCB-contaminated
fish had lower IQ and exhibited behavioral
problems (236). Recent clinical studies fur-
ther demonstrated hypothyroid status in
the infants whose mothers were exposed to
PCB, dioxin, and dibenzofurans (237), and
high levels of these environmental contami-
nants in the breast milk have been related
to reduced neonatal neurological capacity
and high incidence of hypotonia (238).
Perinatal exposure to PCB and TCDD are
of particular concern, therefore, to the risk
assessment for human health. Maternal
ingestion of these contaminants results in
its transfer to human neonates through the
placenta and by breastfeeding (239,240).
Children's exposure to these lipophilic
chemicals can be 10 to 40 times greater
than the daily exposure of an adult (241).

Although the actions of thyroid hormone
in higher organisms are critical to normal
growth, differentiation, and metabolic regu-
lation, there is an increasing body of data
suggesting a critical involvement of thyroid
hormones in the carcinogenic process. There
are data demonstrating that the thyroid sta-
tus of experimental animal models and
humans dramatically affects tumor forma-
tion, growth, and metastasis (242). Relevant
to the issue of endocrine disruptors are the
findings that thyroid hormones dramatically
stimulate the proliferation kinetics ofMCF-
7 mammary cancer cells in culture and that
antiestrogens prevent the stimulatory effects
of T3 on MCF-7 proliferation (243). It also
has been reported that estrogen stimulates
postconfluent cell accumulation and foci
formation of human MCF-7 breast cancer
cells (67) whereas TCDD, a potent inducer
of differentiation and an antiestrogenic sub-
stance, inhibits this process (244).

Endocrine Disruptors and Immuno-
toxicology. The interrelationship of
endocrine and immune systems is com-
plex, but research into this area is progress-
ing rapidly (245-247). The elucidation of
this interaction between endocrine and
immune systems is made more challenging
with the addition of species diversity (e.g.,
shellfish, fish, birds). However, when eval-
uated, endocrine and immune functions
are somewhat similar to those found in
mammals (10,248-250).

It is beyond the scope of this document
to assess the relationship between endo-
crine and immune systems. A review on
the interactions of the immune, neural,
and endocrine systems recently has been

published (251). Instead, the present dis-
cussion briefly summarizes a few of the key
immunotoxicology issues in the context of
endocrine function.

Immune systems in most vertebrate
animals typically consist of a diffuse and
complex set of lymphoid structures and of
innate and inducible immune functions
such as phagocytosis, antibody formation,
and cell-mediated immunity. The purpose
of the immune system is to protect organ-
isms from various forms of foreign invaders.
Deleterious effects of chemicals on the
immune system of animals has been briefly
reviewed by De Guise et al. (252). Three
dasses of undesirable effects have been iden-
tified that may occur when the immune sys-
tem is perturbed by exposure to chemicals
in the environment: immunodeficiency or
immunosuppression; alterations of natural,
genetically controlled host defense mecha-
nisms; and/or hypersensitivity or allergy.
The alteration of (mammalian) immune
responses is often reflected by changes in an
organism's susceptibility to disease agents,
parasites, latent viral infections, and even
tumor formation (253-256).

Several xenobiotics, such as therapeutic
drugs, pesticides, metals, and/or other per-
sistent environmental contaminants (diox-
ins, PCBs, PAHs, etc.), are either already
known to or are suspected of having a direct
and adverse impact on immune structures
and functions in humans, laboratory and
field mammals, avian species, fish, and even
invertebrates (248,250,254,255,257-263).
Dioxin (2,3,7,8-TCDD) is just one con-
taminant that has been demonstrated to
have an impact on a wide variety of
immune parameters, for example, thymic
atrophy, antibody responses, and impaired
disease resistance (253,254,256,260,264).
In addition to TCDD, several other xeno-
biotics have been implicated as possibly
affecting immune structures and functions.
Reviews recently have been published on
immunotoxicity and the possible impacts
of heavy metals (265), pesticides (266),
and PCBs (267) in relation to human
health and the Great Lakes.

Similarly, it is known that immune sys-
tems are also regularly being directly and
indirectly affected by normal endocrine
functioning in animals (245,246,268).
For example, the human immune system
can be orchestrated by the normal circa-
dian rhythms found in the release and
action of glucocorticoid hormones such as
cortisol (269).

There is a normal daily rhythm in the
levels of cortisol circulating in the blood of
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humans (and in other vertebrate animals).
In humans, the highest cortisol levels are
found in the morning and the lowest in the
evening. An inverse relationship also is
found between blood cortisol levels and
immune parameters of inflammatory
responses and numbers of circulating
leukocytes. This rhythmic endocrine pres-
ence probably is a dominant feature influ-
encing the fact that the number of
leukocytes in the blood fluctuates regularly,
with a variation of as much as 50% in a
day (269).

This effect is not surprising because
cortisol is one of the stress (flight-or-fight)
hormones known to have an adverse
impact on the number of white blood cells
in the blood. The adverse impacts of glu-
cocorticoids, especially cortisol and corti-
sone, on the immune systems of other
vertebrates in the environment also seem
somewhat consistent with the experiences
of mammals (247,258,263,270).

As discussed in other parts of this
review, endocrine system functioning can
be adversely affected by a wide variety of
xenobiotics (10,48,271-273). In fact,
humans have intentionally developed and
already widely used such chemicals as pesti-
cides in the environment (e.g., insect
growth regulators). Therefore, it should not
be surprising to find that the adverse
impacts of xenobiotics on endocrine func-
tioning can thereby (directly and indirectly)
also significantly influence the structures
and functions of the immune system and its
normal protective responses against foreign
bacteria, viruses, parasites, and so on.

This is an important area for considera-
tion. However, as should be evident from
the brief discussion above, these relation-
ships are complex and actively evolving.
Despite the best of intentions, it probably
will not be easy to tease out the complex
relationships among the impacts of numer-
ous diverse xenobiotics on endocrine func-
tions, immunologic functions, and the
diverse types of species on which these
chemicals could have an impact on both
these systems and their interactions.

Effects on Aquatic Life and Wildlife
Background. There is increasing evidence
that a number of chemicals in the environ-
ment may disrupt the endocrine systems of
aquatic life and wildlife. This includes both
manmade chemicals (xenobiotics) and
chemicals that occur naturally in plants,
such as phytoestrogens.

SYNTHETIC CHEMICALS (XENOBIOTICS).
Many synthetic chemicals have been

labeled as suspected environmental
endocrine disruptors and are addressed
briefly below. These include alkylphenols,
bisphenol A, TCDD, 2,3,7,8-tetra-
chlorodibenzofuran (TCDF), PCBs, and
some pesticides.

Some of the chemicals thought to be
environmental endocrine disruptors are
used in commerce today in the United
States; however, many other xenobiotics
have been prohibited previously from use in
the United States because of their adverse
effects on human health and the environ-
ment. Some of these xenobiotic chemicals
not in use today in North America persist
in the environment. They are atmospheri-
cally transported and deposited from other
parts of the world that still use them or
from previous environmental contamina-
tion (274). Environmental residues ofsome
xenobiotic compounds decreased after these
chemicals were banned or canceled, but the
residues of many others have leveled off
because of physical properties that cause
them to accumulate in sediments, be re-
released into the aquatic environment, and
accumulate in the tissues of organisms.

Purdom et al. (12) suggested that
alkylphenol-polyethoxylates (APE), origi-
nating from the biodegradation of sur-
factants and detergents during sewage
treatment, and ethynylestradiol, originating
from pharmaceutical use, are the two most
likely sources of the estrogenic substances
present in sewage effluent. Alkylphenols,
such as nonylphenol, are commonly used
as antioxidants and also are degradates of
the biodegradation of a family of nonionic
surfactants (such as APE) during sewage
treatment (275).

Nonylphenol and other alkylphenols
have been reported to leach from plastics
used in food processing and packaging,
such as food grade polyvinyl chloride
(276,277). In the development of a screen-
ing assay for estrogenic compounds,
nonylphenol was discovered to leach from
polystyrene laboratoryware (278) and
bisphenol-A was released from plasticware
during autoclaving (279).
TCDD and TCDF also are suspected of

being environmental endocrine disruptors.
They are byproducts of the paper, wood,
and herbicide industries and are formed in
the incineration of some chlorinated
organic compounds (280).

PCBs are a class of compounds that
have approximately 113 congeners present
in the environment. PCBs, which disrupt
hormone pathways involved in, for exam-
ple, male fertility (281), were banned from

further production in the United States in
1976 under the Toxic Substances Control
Act, but these agents were used widely
between 1930 and 1970 as additives in
products such as paints, plastics, rubber,
adhesives, printing ink, and insecticides
(282). Although 31% of total PCBs manu-
factured are currently estimated to be pre-
sent in the global environment, only 4% of
cumulative world production can be
accounted for as degraded or incinerated.
Many PCBs are still in use in older electri-
cal equipment (e.g., transformers), in con-
tainment storage, or in dumps or landfills.
Releases from these sources can result in
continuing PCB pollution for years to
come (283).

Evidence also exists that pesticides such
as alachlor, DDT, dicofol, methoxychlor,
chlordane, and many others can disrupt
the endocrine systems of fish and feral
species. Various pesticides with suspected
endocrine disruption capabilities are listed
in Table 2.

PHYTOESTROGENS. Phytoestrogens,
which are hormone-mimicking substances
naturally present in plants, are suspected of
interfering with the endocrine systems of
grazing animals [see review by Hughes
(284)]. Specific compounds that have been
identified as phytoestrogens include coume-
strol, formononetin, daidzein, biochanin A,
and genistein. In all, more than 300 species
of plants in more than 16 families are
known to contain estrogenic substances
(284). Some examples of plants that con-
tain phytoestrogens indude beets, soybeans,
rye grass, wheat, alfalfa, clover, apples, and
cherries. These agents are responsible for
the depression of fertility observed in sheep
grazing on clover pastures, decreasing
serum progesterone or pituitary LH. Plant
sterols in paper pulp mill effluent also may
be responsible for the masculinizing effect
observed in fish downstream from pulp
mills (285). It should be noted that some
phytoestrogens (e.g., naringenin) can be
both estrogenic and antiestrogenic (286).

Endocrine-related Effects. We know
that certain chemicals can affect normal
endocrine function and that certain
endocrine-disrupting chemicals can substan-
tially reduce some animal populations. We
also know that there can be extreme differ-
ences among species in the susceptibility to
these chemicals. These differences are
exploited specifically by chemists in the
development of pesticides designed to dis-
rupt insect endocrine systems through an
array of compounds collectively referred to
as insect growth regulators. Thus, the
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endocrine systems of insects have been inten-
tionally targeted for insecticidal activity.
These chemicals include juvenile hormone
mimics (e.g., methoprene), antijuvenile hor-
mone analogs (e.g., precocene), chitin syn-
thesis inhibitors (e.g., diflubenzuron),
ecdysone analogs (e.g., tebufenozide), and
molting disruptants (e.g., fenoxycarb). These
insect growth regulators were developed not
only to be efficient pesticides, but also to be
highly specific to insects without risk to
other nontarget animals, especially verte-
brates. Although these compounds can be
active against some insect species and not
others, studies have documented the sensi-
tivity of certain nontarget arthropods, espe-
cially crustaceans, to these compounds
(287-294). In addition to insect growth
regulators, the well-known case of DDT
and its effects on avian eggshell thinning has
been linked to endocrine pathways (295).
Evidence is accumulating that many chemi-
cals released into the environment can dis-
rupt normal endocrine function in a variety
of fish and wildlife.

Some of the deleterious effects observed
in aquatic life and wildlife that may be
caused by endocrine-disrupting mecha-
nisms, as summarized by Colborn et al.
(11), include the following:
* Abnormal thyroid function in birds

and fish (296-298)
* Decreased fertility in birds, fish, shell-

fish, and mammals (298-301)
* Decreased hatching success in fish,

birds, and reptiles (271,302,303)
* Demasculinization and feminization of

fish, birds, reptiles, and mammals
(28,30.304,305)

* Defeminization and masculinization of
fish and gastropods (285,306)

* Alteration of immune function in birds
and mammals (307,308).
Representative Examples. INVERTE-

BRATES. In field studies, Reijnders and
Brasseur (309) report that female marine
snails with male genitalia, including a penis
and vas deferens, are now common. The
cause of this phenomenon is exposure to
tributyltin (TBT) compounds, which are
used as marine antifouling paints on
ships. TBT is an extremely toxic chemical
that at sublethal levels also appears to
have significant hormonal effects leading to
what appears to be an irreversible induc-
tion of male sex characteristics on females
(imposex) (310).

Bryan et al. (311) found that populations
of the dog-whelk snail (Nucella lapillus)
were disappearing or diminishing in many
locations along the United Kingdom coast

Table 2. Attributed endocrine disruption effects in wildlife for some pesticides.

Pesticide

Herbicides
Trifluralin

Fungicides
Benomyl
Iprodione

Mancozeb
Metiram
Tributyltin oxide
Vinclozolin

Insecticides
Azadirachtin
Carbaryl
Dicofol
Dieldrin/aldrin
Diflubenzuron
DDT
Endosulfan
Fenoxycarb
Malathion
Methomyl
Methoxychlor
Parathion

Various synthetic
pyrethroids

Toxaphene

Reported effect (Office of Pesticide Programs files)

Fish vertebral anomalies

Fish growth impaired, reduced embryo survival; mysid reproduction impaired
Altered bird behavior, reduced egg production, reduced hatchling weight;
mysid reproduction impaired

Avian reproduction impaired, delay in egg laying
Avian reproduction impaired, reduced egg production, reduced fertility, embryonic deaths
Imposex in snails; oyster growth anomalies
Avian reproduction impaired, reduced egg production, reduced fertility,
impaired testicular development

Arthropod molt inhibition
Avian reproduction impaired; fish reproduction impaired
Avian reproduction impaired
Avian reproduction impaired
Reduced testosterone in birds; arthropod cuticle deposition disruption
Avian reproduction impaired, eggshell thinning
Avian reproduction impaired, reduced egg production
Arthropod molt inhibition
Fish growth reduced
Avian reproduction impaired
Avian reproduction impaired; fish growth reduced, impaired hatching success
Avian reproduction impaired, reduced egg production, reduced adult
body weight; fish reproduction impaired, vertebral anomalies; mysid growth reduced

Avian reproduction impaired, eggshell thinning; fish reproduction impaired

Avian adult growth reduced, shortened egg-laying period, reduced hatchability;
fish growth reduced, vertebral anomalies

because of the effects of TBT. Gibbs et al.
(300) found that there was a direct dose-
response relationship between exposure of
the snails to TBT and the degree of impo-
sex induced. This effect can be seen at levels
(expressed as elemental tin concentrations)
below 0.5 ng/l (wt/vol) equal to parts per
trillion (ppt), although reproduction
appears unaffected at these low levels (300).
At slightly higher levels, 1 to 2 ppt, the
penis is larger, and in some animals, the vas
deferens tissue grows over the genital
papilla and the organism is effectively steril-
ized. As concentrations increase, practically
all of the animals become sterile. Finally, at
levels of 10 ppt or higher, oogenesis is
suppressed and spermatogenesis is initiated.

In additional studies, Bryan et al. (311)
specifically tested the ability of six tin com-
pounds to induce imposex on female dog-
whelks that were already slightly affected
by this condition. Because of the wide-
spread use of antifouling paints, the
authors report that in England and Wales
it is impossible to find unaffected popula-
tions. The six compounds were tested both
by dissolving them in seawater over a 14-
day exposure period and, in separate exper-
iments, by a single injection to compensate
for lack of absorption from water of some
of the compounds. TBT was the most

effective at inducing imposex. Neither di-
nor monobutyltin had an effect on the
snails. A fourth compound, triphenyltin,
was also ineffective in inducing imposex,
even though its toxicity is comparable to
that ofTBT for some organisms and it has
pesticidal and antifouling uses similar to
those of TBT. A fifth chemical, tripropy-
ltin, was accumulated from solution by the
snails to a higher concentration than TBT
and induced imposex, but it was far less
effective than TBT. Tetrabutyltin was
reported to cause a marginal increase in
female penis size, but again, was much less
effective than TBT. Given TBT's strong
effect, the authors concluded that the pres-
ence of imposex in dog-whelks may have
utility as a biomarker for TBT. This has
been borne out by additional studies.

Bright and Ellis (312) surveyed marine
snails in Northeast Pacific neogastropods
for signs of imposex. They examined eight
different species of marine snails in areas
that contained differing amounts of TBT
pollution, including four species from the
genus Nucella [(but not N. lapillus, the
species of snail studied by, e.g., Gibbs and
Bryan (310)]; N. lapillus does not occur in
the Northeast Pacific). Imposex could be
confirmed in all but one species of snail
(Amphissa columbiana, Dall). One species,
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Nucella emarginata, showed the clearest pos-
itive relationship between degree of imposex
and TBT concentrations due to its relatively
short life span and much earlier age of
maturity relative to the other species.
Sterility due to imposex (and consequent
blockage of the genital pore) could be
detected in only two of the eight species
examined: Nucella lamellosa and Neptunae
phoenecia. Evidence of a negative effect due
to TBT pollution on a population of snails
(N. lamellosa) was seen in a sampling of the
Victoria Harbour breakwater, the most pol-
luted of three sites examined. Juveniles of
this species were underrepresented, and
many adult females retained their egg cap-
sules due to blockage of the genital pore.
Bright and Ellis (312) note that the selective
loss of reproductive potential observed for
N. /amellosa possibly could result in an
alteration of the competitive interactions
between sympatric species of Nucella (differ-
ent species of Nucella often co-occur within
the intertidal zone of British Columbia).

Ellis and Pattisina (306) report further
on imposex observed in neogastropod mol-
lusks from Singapore, Malaysia, and
Indonesia, again with positive association
with boat and ship traffic (and implied,
although not measured, TBT contamina-
tion). The authors note that imposex has
been widely observed (at least 45 species
studied), and available studies suggest that
TBT pollution may be a worldwide phe-
nomenon. Because other mollusks are also
sensitive to the effects ofTBT (e.g., oysters
and other bivalve mollusks), TBT pollu-
tion has both commercial and ecological
impacts. Furthermore, because of TBT's
ability to bioaccumulate, concerns arise
about the possibility of having a reproduc-
tive toxicant in the human food supply
(306). TBT has been found in bivalve
mollusks and fish species eaten by man,
although levels of these residues in edible
tissues (e.g., 0.08 to 0.9 mg/kg in salmon
in the United States, and < 10 to 5600
pg/kg in Chesapeake Bay oysters) are con-
sidered to be safe levels (313). Cooking
does not degrade or remove the TBT.
Whether TBT causes the previously men-
tioned reproductive effects through an
endocrine disruption mechanism awaits
further study.

Field and laboratory observations after
implementation of chemical controls indi-
cate that TBT does have reproductive effects
and that these effects, at least on marine snail
populations, can be mitigated. Matthiessen
et al. (314) found that periwinkle (Littorina
littorea) in two British estuaries showed

steady population increases as TBT residues
in water and sediments declined as a result
of the partial ban on TBT use in 1987 by
the United Kingdom. Unlike the dog-
whelk, the periwinkle does not undergo
imposex in response to TBT exposure,
which results in decreased egg production
due to blockage of the genital pore
(311,314,315). Nonetheless, a slightly dif-
ferent masculinizing phenomenon corre-
lated with TBT exposures has been
observed in periwinkles-intersex (315).
The intersex phenomenon differs from
imposex in that there is no superimposi-
tion of male organs (penis or vas deferens)
on the female. Instead, there is a malforma-
tion of the pallial oviduct which takes on a
progressively more masculine form, with
five distinguishable stages identified by
Bauer et al. (315). Based on field observa-
tions, Bauer et al. (315) postulate that the
threshold concentration for intersex devel-
opment is about 15 ng TBT as Sn/liter and
that the degree of intersex noted in envi-
ronmental populations may be potentially
useful as a biomonitor for TBT, especially
in areas where populations of Nucella are
not present.

In terms of actual reproductive effects,
Matthiessen et al. (314), in laboratory
studies, showed that exposures to TBT
resulted in decreased egg production by the
periwinkle. None of the test concentrations
used-0, 10, 100, 330, and 1000 ng/liter
(nominal)-affected snail growth rate com-
pared with that of controls, nor was impo-
sex (examined for) seen, nor the intersex
phenomenon described by Bauer et al.
(315) noted. Egg production was measured
beginning 2 months after treatment began.
Egg production more or less decreased on a
seasonal basis and reductions became more
evident at progressively lower exposure con-
centrations with increasing exposure times.
At the end of the 12 months of exposure,
egg production was significantly depressed
at exposure concentrations in the range of
20.5 to 107.6 ng/liter (measured), concen-
trations that often had been exceeded in the
study estuaries before implementation of
the ban on TBT use. In experiments exam-
ining egg development and hatching on
freshly collected eggs from a relatively
uncontaminated site, Matthiessen et al.
(314) found lower rates of hatching com-
pared with those of controls but at levels
much higher than those depressing egg pro-
duction (e.g., the lowest concentration
tested, 560 ng/liter, caused only a slightly
lower hatching rate than the control level)
and therefore concluded that this aspect of

TBT toxicity was less important than egg
production. However, the authors also
noted that experiments searching for poten-
tial longer term effects on the veliger should
be conducted before concluding that egg
production depression is the most sensitive
or important effect.

Moore and Stevenson (316) reported
intersexuality in the harpacticoid copepods,
Paramphiascella hyberborea, Halectinosoma
similidistinctum, H. sp., and Stenhelia
gibba. These benthic invertebrates were
taken in the vicinity of a sewage outfall
near Edinburgh, Scotland. However, the
investigators did not find a correlation
between intersex frequency and proximity
to the discharge.

FISH. Purdom et al. (12) reported as
early as 1985 both public and scientific
concerns about the effects of synthetic
estrogens (from birth control pills) entering
rivers in the United Kingdom. This con-
cern was heightened when British anglers
reported catching fish with both male and
female characteristics; these hermaphro-
ditic fish were caught in lagoons below
sewage treatment plants (12). The particu-
lar fish species is known as a roach, Rutilus
rutilus (317). Purdom et al. (12) hypothe-
sized that the widespread use of contracep-
tive pills and the subsequent release of
ethynylestradiol (via sewage treatment
plants) might account for the occurrence of
these hermaphroditic fish. To determine
how widespread estrogens might be in the
ambient waters of Great Britain, investiga-
tors used a biomarker approach in which
male rainbow trout (Onchorhynchus mykiss)
were placed downstream from sewage
treatment works and periodically sampled
for the presence of vitellogenin in the
blood serum.

Vitellogenin is a phospholipoprotein
synthesized in the liver of female oviparous
vertebrates. The induction of vitellogenin
is naturally induced in females in response
to an estrogen, typically estradiol-17p
(318,319). Vitellogenin leaves the liver and
enters the bloodstream where it is used by
the ovary. In the ovary, vitellogenin is
transformed into two major types of yolk
proteins, lipovitellins and phosvitins (320).

Purdom et al. (12) reported the results
of placing the caged rainbow trout in the
effluents of sewage treatment plants
throughout Great Britain. Five series of
field trials began in 1986 and continued
through 1989. Overall, the results of the
4-year survey indicated that effluents from
sewage treatment plants contained an
estrogenlike substance(s) as measured by
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the vitellogenin assay (321). A survey of
six rivers and tributaries of the United
Kingdom has now been completed (317).
Estrogenic activity, as measured by the
method of Purdom et al. (12) has shown
there is estrogenic activity at three sites. In
one river, the Aire, the vitellogenin con-
centration in male fish was similar to
those in gravid female fish in unexposed
sites; retardation of testicular growth was
also observed. Nonylphenol, a breakdown
product of nonylphenol ethoxylate surfac-
tants used in wool-scouring plants near
the Aire, is speculated to be the causative
agent. Laboratory experiments with adult
male trout showed that nonylphenol
induced both vitellogenin formation and
testicular inhibition (317,322). However,
in other rivers, there has been no correla-
tion between a specific chemical (e.g.,
nonylphenol) and vitellogenin formation.
Of particular importance are the studies
by Harries et al. (317) that indicate
related alkylphenols, for example, and var-
ious unrelated estrogenic chemicals (e.g.,
o,p'-DDT, Arochlor, bisphenol A) can act
in an additive fashion in vitro. Thus,
individual chemicals could be present in
the environment at concentrations below
that needed to elicit an estrogenic effect,
but collectively they could induce some
estrogenic activity.

Pelissero et al. (323) improved the vitel-
logenin assay by developing a procedure to
isolate rainbow trout hepatocytes, treat the
cells with a suspected estrogen, and then
measure the vitellogenin that is secreted
into the culture medium. Jobling and
Sumpter (275) used this in vitro bioassay to
evaluate the estrogenic activities of
alkylphenol ethoxylates and their break-
down products. The results are summarized
in Table 3.

The results indicate that the vitellogenin
assay can be a useful biomarker for detecting
exposure to estrogens in the environment.

Table 3 . Relative estrogenic potencies of alkylphenol
ethoxylates and breakdown products.a

Compound Relative potencyb
Estradiol-1 7, 1
Nonylphenol ethoxylate, EO=9 0.0000002 C
Nonylphenol ethoxylate, EO=2 0.0000060
Nonylphenol carboxylate 0.0000063
p-Nonylphenol 0.0000090
p-Octylphenol 0.00003700
p-tert-Butylphenol 0.0001 600

aData from Jobling and Sumpter (275). bRelative
potency compared to estradiol. c1n the MCF-7 assay,
p-nonylphenol had a relative potency of 0.000003
compared to estradiol (68).

Ability to expand field studies has been lim-
ited by the availability of vitellogenin anti-
bodies. Polyclonal antisera have been raised
against purified vitellogenin from a wide
variety of species; however, these antisera
have been extremely species specific.
Recently, there has been significant research
to develop universal antibodies that will
recognize all fish, if not all vertebrate vitel-
logenins (324-327). In question is the bio-
logical significance of vitellogenin
formation in male fish. Nimrod and
Benson (318) cited a case in which male
rainbow trout died from kidney failure,
possibly due to the formation of excessive
amounts of vitellogenin. Experiments by
Jobling et al. (322) indicated that high lev-
els of vitellogenin formation in male rain-
bow trout was accompanied by a decrease in
testis growth, as measured by the weight of
the testes compared with total body weight
(gonodasomatic index). Spermatogenesis
also was affected.

An example of the masculinization of
a fish species is given by Howell et al.
(328), who reported that 4 miles down-
stream from pulp and paper mills in
Florida, mosquito fish females were mas-
culinized and developed the male sex
organ called the gonopodium. These mas-
culinized females sometimes attempted to
mate with normal females, or when
placed together, with each other. Further-
more, males were found to be hyper-
masculinized, displaying normal but
hyperaggressive mating behavior. When
placed in a tank with a normal male and
three normal females, the hypermasculin-
ized male established dominance and was
free to court the females without compe-
tition (328). Chemicals in the effluent
were not identified. Howell et al. (328)
noted, however, that this masculinizing
effect was not likely to be due to natural
conditions and paralleled laboratory
experiments using known androgens,
which induce the precocious appearance
of male secondary sexual characteristics in
males and masculinization of females.
Commenting on this work, Davis and
Bartone (285) noted that kraft mill efflu-
ents contain phytosterols (e.g., tall [pine]
oil contains 25-35% phytosterols), which
can be converted microbially to C-19
steroids, which may exert the observed
androgenic effects. The authors noted
that bleached kraft mill effluents also
contain other substances, for example,
chlorinated organic substances, including
dioxins and furans, which may have
endocrine-disrupting effects.

Endocrine disruption affecting devel-
opment and fertility also was noted in sev-
eral other fish species exposed to bleached
kraft mill effluent, with greater or lesser
effects noted depending on the fish species
studied. As in the study by Howell et al.
(328), the agent or agents actually causing
the observed effects were not determined.
Munkittrick et al. (304) reported that
near a bleached kraft mill on Lake
Superior, white suckers had lower than
normal levels of steroid sex hormones in
their blood, took longer to mature, devel-
oped smaller gonads, and had fewer eggs at
maturity. McMaster et al. (329), in a fol-
lowup to this study, found similar
results-both male and female fish reached
maturity at an older age, the females con-
tained fewer eggs at maturity, the males had
reduced development of secondary sexual
characteristics (i.e., nuptial tubercles), and
there were reduced plasma steroid levels
throughout the year, induding testosterone
and 17a,2OP-dihydroxyprogesterone in
both sexes, as well as 1 1-ketotestosterone
in males and estradiol-17p in females. Van
Der Kraak et al. (330), in an additional
study on this population of white suckers,
determined that the endocrine effects of
bleached kraft mill effluent (including
reduced gonadotropin secretion by the
pituitary, depressed steroidogenic capacity
of the ovarian follides, and altered periph-
eral metabolism of steroids) were caused by
the effluent's acting at multiple sites in the
pituitary-gonadal axis. Eggs failed to
increase in size with age at the bleached
kraft mill exposure (BKME) site, compared
to those among fish at the (nonexposed)
reference site where there was an age-
related increase in egg size (329). None-
theless, although eggs were smaller at the
BKME site, and although male fish at the
BKME site exhibited sperm that had
reduced motility (but not significantly dif-
ferent milt volume, spermatocrit level, or
seminal plasma constituents), this had no
effect on egg fertilization or hatchability,
initial larval size, or larval survival
(329,330). Furthermore, although pre-
spawning BKME females were older than
those at the reference site, there was no
difference between sites in mean fecun-
dity. (Note: This is a negative result for
the BKME population; one would expect
the population with the higher percentage
of older fish to have a higher mean fecun-
dity.) While the observed changes in the
BKME white suckers can be described as
unhealthy, and, indeed, Van Der Kraak et
al. (330) noted that it is remarkable that
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fish having such aberrant gonadotropin
and steroid levels are able to spawn suc-
cessfully at all, the consequences of these
changes to the exposed population are dif-
ficult to predict and would require addi-
tional (population dynamics) studies.

Munkittrick et al. (331) further
reported that these hormone-related
changes were not improved after 1 year
with the addition of secondary treatment of
the mill effluent or with a 2-week shut-
down of mill activities. The authors noted
that the lower levels of circulating steroids
were due to an inability, or reduced ability,
of the hypothalamic-pituitary-gonadal axis
to respond to alterations in steroid levels
and a reduced ability to synthesize steroids.
The authors further concluded that one
cannot tell if the persistence of these steroid
abnormalities at the BKME site after sec-
ondary treatment is due to food chain cont-
amination from past pollution or whether
secondary treatment has not removed the
responsible chemicals. Other exposed fish
studied include lake whitefish (Coregonus
clupeaformis), which experience changes
similar to white suckers in terms of reduced
gonad size, reduced egg size, and increased
age to maturity. However, while the white
suckers are capable of producing viable
eggs, Munkittrick et al. (331) reported that
the lake whitefish appeared to be experienc-
ing reproductive problems. In contrast, the
long-nose sucker (Catastomus catastomus)
that was also examined showed much less
effect than either species, but even here
there was an altered age distribution of the
spawning population (with older fish, on
average) characteristic of the BKME popu-
lation (331). Although not explored by
Munkittrick et al. (331), an issue that
immediately comes to mind for study is
how the differential sensitivity of coexisting
populations of fish species to endocrine dis-
ruptors alters the ecological balance
between the species. In cases in which
species compete with each other, even a
subtle difference in effects could shift what
was a delicate balance of populations and
cause one species to greatly decrease in
numbers, or even go locally extinct.

More subtle effects of endocrine
disruptors on fish species also have been
observed. Thomas (332) reported prelimi-
nary studies in which he exposed adult
female Atlantic croakers (Micropogonias
undulatus) to sublethal concentrations of
lead, cadmium, benzo[a]pyrene, and
PCBs. For all of these chemicals, he found
significant decreases or increases in plasma
steroid levels, ovarian steroid secretion, and

ovarian growth in these fish. In more
detailed studies, he exposed croakers col-
lected at the beginning of the reproductive
season to a mixture of Aroclor 1254 in the
diet (0.5 mg/100 g bw/day) for 17 days or
to 1 ppm cadmium dissolved in 30% salin-
ity seawater for 40 days. Significant, but
opposite effects, on the reproductive sys-
tem were observed with these exposures,
and the results in both cases suggested that
the hypothalamic-pituitary complex was
the major site of toxic action (332). With
PCBs, there was suppression of ovarian
growth and a decrease in plasma estradiol
concentrations. There were also decreases
in plasma vitellogenin levels and hepatic
estrogen receptor concentrations. The
author concluded that the effects seen with
PCBs implied an impairment of gonado-
tropin secretion by the pituitary. On the
other hand, with exposure to cadmium,
both ovarian growth and plasma estradiol
were increased, as was plasma gonado-
tropin secretion. For cadmium, a direct
stimulating effect on the pituitary appeared
to be the case, as was further indicated by
in vitro studies (332). Either treatment, the
author judged, could inhibit the reproduc-
tive success of this fish species by causing
oocytes to mature outside the normal
(optimum) spawning period.

In a case of a widespread effect, exposure
to endocrine-disrupting chemicals is sus-
pected of affecting thyroid function and
fertility and embryo survival and develop-
ment in Great Lakes salmon (298). In one
study, Moccia et al. (296) found that in
salmon from British Columbia (a relatively
pristine population) the thyroid morphol-
ogy was typical of a normal, nonpathologi-
cal gland. In contrast, thyroid tissue
collected from Great Lakes salmon was
invariably altered and abnormal in appear-
ance (296). Even in Great Lakes salmon
where no overt goiters were apparent, there
was extensive follicular hyperplasia, with
the follicles assuming abnormal, nonspher-
ical shapes. In other fish, the histopathol-
ogy was even more abnormal, revealing loss
of follicular organization and, in some fish,
large masses of aggregated epithelial cells
that were difficult to distinguish from neo-
plasms (296). Leatherland (298), in con-
tinuing studies, noted that in every one of
the Great Lakes, thyroid hyperplasia and
hypertrophy have been found in 100% of
the salmon stocks analyzed in the past two
decades. It should be emphasized that
grossly visible lesions, e.g., thyroid hyper-
plasia and reproductive effects, have been
observed in clusters and in some lakes have

actually declined, e.g., in Lake Ontario
coho salmon, where different genetic
stocks were introduced beginning in the
1970s. Nonetheless, while the incidence of
gross lesions has changed in some areas,
"the prevalence of thyroid hyperplasia has
been consistently 100% for the last 18
years, regardless of salmon species, lake of
origin, or gender" (298). Leatherland
(298) concluded that a 100% prevalence
of abnormal thyroid histology provides the
most convincing evidence of a biologically
active environmental factor affecting the
function of the endocrine system in Great
Lakes fish. Salmon are not the only
affected species. Herring gulls throughout
the Great Lakes have been found with
enlarged thyroids (333).

The agent causing these thyroid and
reproductive effects has not been deter-
mined. Leatherland (298) believes that
feeding experiments that he and others
have conducted point to an agent that
affects the endocrine system, is readily
metabolized or eliminated, and is not
bioaccumulated; however, even this
hypothesis is tentative. A common prob-
lem that arises from abnormal thyroid
function is goiter, a condition characterized
by an enlarged thyroid. The follicular cells
produce colloid, and if they are unable to
iodinate it, the follicles become congested
with colloid and do not make functional
thyroid hormones. Without the feedback
inhibition by thyroid hormones, TSH
from the pituitary is elevated and stimu-
lates the thyroid, which enlarges in an
attempt to meet demand (334). Goiter can
be caused by a lack of iodine in the diet or
by chemicals in the environment that act at
multiple steps in the process from synthesis
of thyroid hormone to postreceptor acti-
vation as discussed earlier. In Great Lakes
salmon, lack of iodine also has been
postulated to be the cause of the observed
thyroid effects and cannot be ruled out
completely at this time either in whole or
in part. However, Leatherland (298)
argues strongly from physiological and eco-
logical observations that iodine deficiency
is not the likely or even primary cause of
the observed thyroid effects. It should be
emphasized, however, that there is no firm
evidence linking thyroid hyperplasia
observed in Great Lakes salmon with any
specific chemical contamination (LC
Folmar, personal communication).

Furthermore, epidemiologic observa-
tions for the goitrogenic effects seen in
salmon have not been mentioned for
either indigenous or other more purely
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freshwater introduced fish species. If this
were the case, a linkage of goitrogenic
effects to a possible toxic chemical etiology
would be strengthened.

Sonstegard and Leatherland (335)
noted that the particular significance of the
observed effects on salmon is that if goitro-
genic substances are involved in the etiol-
ogy of the observed thyroid effects in fish,
such substances potentially could affect
human health because fish are eaten and the
substances they contain are passed on to
human consumers. The effects of these sub-
stances on fish populations or other wildlife
populations also deserve more study (335).
As in mammals-with some differences in
the particulars-the thyroid gland and the
hormones it produces are involved in such
things as metabolism, particularly carbohy-
drate metabolism, and growth, and has, as
in mammals, a permissive rather than a
directly controlling role (336). In teleosts
(fish having bony skeletons compared to
cartilaginous species such as sharks), growth
of the skeletal elements is particularly
sensitive to the state of the thyroid gland.
Thyroid hormones also appear to have a
role, through feedback with the CNS, in
teleost behavior, including general orienta-
tion, motor behavior and activity, and
perhaps migratory behavior (336).

AMPHIBIANS. Many populations of frogs,
toads, and salamanders are declining in
numbers in North America and worldwide
(337). Several reasons have been put forth
for the declines, including habitat loss, dis-
ease, ultraviolet radiation (UV), and pollu-
tion. The role of endocrine-disrupting
chemicals in these declines, if any, is
unknown. Hypotheses that a disrupted
endocrine process could weaken immune
system response and make individual
amphibians more susceptible to a bacterial
pathogen or less resistant to UV stress have
not been fully explored. Because monitoring
efforts for these populations also have been
limited, a concerted effort would be needed
to confirm or rule out an endocrine-
disrupting chemical etiology for any of the
population losses. Because anurans (frogs
and toads) have both aquatic and terrestrial
life histories and are subject to varied and
multiple exposures (oral, dermal, and
inhalation) at different stages in their life
cycle, this class of vertebrate might repre-
sent a unique sentinel animal model for
laboratory and field exposure studies.

REPTILES. Perhaps the best known
example of putative environmental disrup-
tion is that from Florida's fourth largest
lake, Lake Apopka. In 1980, a chemical

spill from nearby Tower Chemical Com-
pany contaminated the lake. Guillette et al.
(30) reported this spill as a mixture of
dicofol, DDT, and DDE. The spill was
characterized as being primarily dicofol.
More specifically, Tower Chemical Com-
pany was a manufacturer of generic chlor-
benzilate, which was produced from DDT
feedstock. Dicofol is closely related to
chlorbenzilate and is a byproduct of its
manufacturing process. Dicofol and chlor-
benzilate both degrade principally to
dichlorobenzophenone. The relative pro-
portions of DDT, DDE, and other DDT-
related materials, dicofol, chlorbenzilate,
and dichlorobenzophenone, in the spill are
not definite, but certainly all of these
compounds were represented.
A variety of endocrine-related abnormali-

ties were reported as a consequence of this
spill. Most male alligators from this lake
appear to have been demasculinized, with
their phalluses one-half to one-fourth the
normal size. Histologically, their seminifer-
ous tubules show abnormal development
and are marked by the presence of cell types
and cell structures not seen in male alligators
from (relatively unpolluted) Lake Woodruff
(30). Lake Apopka male alligators were fur-
ther characterized as having extremely low
serum levels of both testosterone and estro-
gen but comparatively more estrogen (30).
This diminished hormone level and altered
ratio was evident in the eggs, hatchlings, and
juvenile animals (30,338-340). For exam-
ple, male Lake Apopka hatchlings had a ratio
of estradiol to testosterone of 2 compared to
the 0.5 ratio seen in normal animals (30).
Female alligators, on the other hand, were
"super-feminized" having an estradiol-to-
testosterone ratio twice as high as normal.
Histologically, the ovaries of Lake Apopka
females were marked by the presence of
numerous polyovular follicles and polynu-
clear oocytes, which were never observed in
alligators from Lake Woodruff (30). A pop-
ulation of juvenile male alligators from Lake
Apopka exhibited smaller penis size and
plasma testosterone was much reduced com-
pared with similar-sized animals from Lake
Woodruff (340). It should be mentioned
that the hypothesis that these abnormalities
in male sexual development heretofore
attributed to xenoestrogenic activity ofDDT
and its metabolites may be mediated
through inhibition of the AR (50,51).

Red-eared turtles in Lake Apopka also
are being demasculinized. Amniotic fluid
concentrations of estradiol and testos-
terone indicate that no turtle hatchling has
a normal androgen synthesis pattern.

Histopathologically, the hatchlings have
either normal appearing ovaries or are
intersex, having ovotestes, with no normal
males observed (341).

The effects of this spill in Lake Apopka
apparently include not only the develop-
mental effects noted above but also effects
on hatching success and population growth.
For example, in Lake Apopka, only 5 to
20% of alligator eggs hatched in each nest
examined compared to a normal hatching
rate of 65 to 80% (342). Furthermore, the
mortality rate of Lake Apopka hatchlings
was dose to 50% in the first 2 weeks, a rate
10 times higher than that in nests from
unaffected areas. Woodward et al. (342)
noted that juvenile alligator densities on
Lake Apopka dedined by 90% during 1980
to 1987. They attributed this decline to
acute reproductive failure, perhaps due to
exposure to DDD and DDE as demon-
strated by the association of decreasing egg
viability and the 1980 spill (342). Alligator
eggs from Lake Apopka were found to have
p,p'-DDE at levels 5.6 ppm (wet weight)
(343), roughly twice that known to
adversely affect the eggs and embryos of
bald eagles. However, in an earlier study,
Heinz et al. (343) looked at hatching suc-
cess in 1985 of artificially incubated eggs
from Lake Apopka that contained signifi-
cantly higher levels of organochlorine pesti-
cides compared with those from Lake
Griffin (where eggs were relatively dean). Of
the analytes, p,p'-DDE was present at the
highest concentration in Lake Apopka eggs
with a geometric mean concentration of 3.5
ppm wet weight (vs 0.58 ppm in Lake
Griffin). The levels of heavy metals were
similar for both lakes and did not appear to
be present at harmful levels. Although
hatching success was lower for Lake Apopka
eggs compared with those from Lake Griffin,
there was no dear association between pesti-
cide levels in Lake Apopka eggs and hatch-
ing success. Given this lack of association,
Heinz et al. (343) concluded that the
observed depression in egg viability could
not be readily attributed to the organochlo-
rine or metal compounds (toxaphene,
dieldrin, DDT and its metabolites,
nonachlor, chlordane and oxychlordane,
and 16 metals) analyzed for and detected.
Hexachlorobenzene, hexachlorocyclo-
hexane, heptachlor epoxide, PCBs, endrin,
mirex, and dicofol and its metabolites also
were analyzed, but not detected in 1985.

The example of Lake Apopka demon-
strates the difficulty of determining the
exact causative agent in cases in which a
mixture of chemicals and heavy metals is
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involved and emphasizes the need for coor-
dinating both laboratory and field studies
in these cases. It also points out the need to
focus not only on direct mortality, but also
on the far more common but less easily
measured sublethal effects of endocrine dis-
ruption that may have detrimental conse-
quences to populations in the long term
(and especially as these disruptions occur
to embryos, adversely affecting the organi-
zation of the reproductive, immune, or
nervous systems) (338,339).

As another case in point, Bishop et al.
(303) collected snapping turtle eggs from
five locations in the Great Lakes region and
assayed them for a variety of organochlo-
rine contaminants, including hexa-
chlorobenzene, o-chlordane, t-nonachlor,
p,p'-DDE, mirex, dieldrin, heptachlor
epoxide, pentachlorobiphenyls, dibenzo-p-
dioxins, and dibenzofurans. Based on
analyses of the eggs, two of the sites could
be classified as highly contaminated: total
PCBs 1500-3000 ppb, DDE 500-900 ppb,
other (total) organochlorine pesticides
250-500 ppb, and (total) dioxins/furans
0.06-0.15 ng/g or (ppb) wet weight; two
others as moderately contaminated: total
PCBs 300-500 ppb, DDE 40-80 ppb,
other (total) organochlorine pesticides 100
ppb, and (total) dioxins and furans
0.01-0.02 ng/g or (ppb) wet weight; and the
fifth site as relatively clean: total PCBs 30
ppb, DDE 8 ppb, other (total) organochlo-
rine pesticides 5 ng/g or (ppb) wet weight,
and dioxins and furans (not detectable).
[Data have been rounded and combined in
this paper for comparative purposes; see
Bishop et al. (303) for exact figures.]

There was a strong statistical association
between the presence of these chemicals
(especially the PCB congener 2,3,3',4,4'-
pentachlorobiphenyl) and decreased hatch-
ing success and increased developmental
abnormalities. However, the study could
not conclusively demonstrate that any par-
ticular organochlorine chemical analyzed
was the responsible agent. Interaction
analyses of the variables examined indi-
cated that site effects were more strongly
correlated with developmental abnormali-
ties than individual contaminant levels in
eggs. That is, although there was a strong
correlation between the presence of these
chemicals individually and adverse effects,
there was a stronger relationship between
adverse effects and areas of high contami-
nation in general. The authors judged that
no single chemical substance could be con-
clusively implicated as the causative agent
for the observed developmental effects.

They concluded that controlled reproductive
effects studies of polychlorinated chemicals
on this species of turtle would make the
results of this study more convincing.
A further complication that must be

considered is the way in which sexual devel-
opment is normally regulated in vertebrates.
Among mammals, the development of the
male reproductive tract and sexual character-
istics are regulated by androgens (including
testosterone) and anti-Mullerian hormone
(as discussed earlier). However, in many
poikilotherm (cold-blooded) vertebrates (fish
and reptiles), individuals lack sex chromo-
somes and have evolved other mechanisms
of sexual differentiation. The determining
factor may be the temperature at which
embryos develop; in others, it may be the
social surroundings that control sex
determination. Finally, some individuals
may reproduce asexually by a process of
parthenogenesis. Pertinent to this discussion
is the fact that alligators, many turtles, and
some lizards establish their gender during
embryonic development coincident with dif-
ferentiation of the gonads. Temperature reg-
ulation of sexual differentiation takes place
in an all-or-nothing fashion. Temperature
acts by modulating enzymes and sex steroid
receptors. Depending on the species, the
embryos develop into males predominantly
at low, intermediate, or high temperatures;
females develop at different temperatures
(344). Reptiles with temperature-dependent
sexual determination (TSD) should be good
indicators of estrogenic response [D Crews,
personal communication; (345)].

Gross and Guillette (346), reproductive
endocrinologists at the University of
Florida, completed a laboratory study tak-
ing advantage of TSD. They wanted to
determine if the abnormalities seen in Lake
Apopka's alligators could be induced with
normal eggs treated with DDE. They took
eggs from Lake Woodruff, a relatively clean
lake, and painted estradiol on some and
DDE on others. They then incubated the
eggs at a temperature that, in a clean envi-
ronment, would produce mostly male
hatchlings. When measured at hatching,
the eggs treated with DDE (or estradiol)
were observed to have decreases in allantoic
testosterone concentrations that mimicked
the estrogen-testosterone ratios seen in the
eggs collected from Lake Apopka. Estra-
diol, but not DDE, also increased allantoic
estradiol levels. These observed hormone
ratios indicate a strong demasculinizing
effect from exposure to these chemicals. In
a follow-up interview concerning this
work, Hileman (347) reported that 80%

of the eggs painted with estradiol produced
females. Those eggs painted with DDE
produced 20% female, 40% intersex, and
40% male hatchlings.

In another experiment using a TSD
species, Bergeron et al. (345) dosed the eggs
of the red-eared slider turtle, Trachemys
scripta, with various combinations and
concentrations of 1 1 PCB compounds.
The test substances were dissolved in 95%
ethanol and applied to the outside of the
shell of the eggs. Two compounds, both
hydroxylated forms of PCBs, 2',4',6'-
trichloro-4-biphenylol and 2',3',4',5-
tetrachloro-4-biphenylol, resulted in a
significant percentage of turtles hatching as
females at temperatures that normally pro-
duced males. In the case of 2',4',6'-
trichloro-4-biphenylol, there was 100% sex
reversal at the high dose (100 pg or
approximately 9 ppm). Both of these com-
pounds when tested in mouse tissue also
showed marked estrogen receptor affinity
(218). Although no other PCBs (whether
hydroxylated or nonhydroxylated) showed
sex reversal, Bergeron et al. (345) postu-
lated that the two active hydroxybiphenyls
could exist in steady-state concentrations in
the aquatic environment as metabolites of
other PCBs. Furthermore, when these two
compounds were combined, they had a
synergistic effect. There was a significant
increase in ovarian development at a dose
of 10 pg (about 0.9 ppm), a dose 10-fold
less than the effect observed when the
chemicals were tested singly. Estradiol-
17P, the positive control chemical, gave
similar results when applied at a dose of
0.5 pg (0.04 ppm). Bergeron et al. (345)
noted that the PCB concentrations that
generated estrogenic effects and disruption
of normal gonadal differentiation in their
turtle experiments are similar to average
concentrations of PCBs found in human
breast milk.

As with fish, vitellogenin induction is
thought to have some utility as an estro-
genic biomarker of exposure to environ-
mental endocrine disruptors for amphibia
and reptiles. To test this, Palmer and
Palmer (327) injected 1 pg/g estradiol-17p
(E2), 1 pg/g DES, 250 pg/g o,p'- DDT, or
1 pg/g o,p'-DDT (intraperitoneal, dis-
solved in corn oil) into adult male red-
eared turtles (Trachemys scripta) and adult
male African clawed frogs (Xenopus laevis).
Single injections of test substance were
given daily for 7 days, and plasma was col-
lected on day 14 for analysis. Both the
DES and estradiol treatments induced rela-
tively high concentrations of vitellogenin.
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DDT induced smaller amounts, in a dose-
dependent manner, and corn oil-only (con-
trol) animals showed no extractable
vitellogenin in their plasma. On the basis
of the results of these laboratory studies,
Palmer and Palmer (327) concluded that
the vitellogenin assay may be a useful bio-
marker of xenobiotic estrogen activity in
reptiles and amphibians in wild popula-
tions as well as fish. Palmer and Palmer
(327) also noted that in the case of
lipophilic compounds like o,p'-DDT,
which have estrogenic activity and which
also bioaccumulate, there may be negative
impacts on fertilizability of eggs and devel-
opment of embryos as these lipophilic con-
taminants are mobilized and transferred to
sensitive tissues during the reproductive
and developmental processes.

BIRDS. Hatching success of birds also
has been suspected of being affected by
environmental hormones. DDT and DDE
continue to be a problem in the Great
Lakes due to these chemicals' persistence
and ability to bioaccumulate (348).
Reproductive success of the fish-eating
Forster's tern was dramatically impaired on
organochlorine-contaminated Green Bay
in Lake Michigan (271). Compared with
the Wisconsin control eggs from Lake
Poygan, eggs from Green Bay had an order
of magnitude higher residues of TCDD,
PCDD, and PCBs (201 pg/g vs 2175
pg/g). Hatching success of eggs at Green
Bay was 75% lower than that of those at
Lake Poygan (271). In the 1983 nesting
season, hatchability of Forster's tern eggs
taken from other nests and artificially incu-
bated was about 50% lower for Green Bay
than for Lake Poygan (271).

The insecticide Kepone reportedly also
has an estrogenic effect, as observed in
Japanese quail fed diets contaminated with
10, 40, 80, or 160 ppm Kepone for 6 to 26
days. Effects were observed in a dose-
dependent fashion for all the doses after 26
days of exposure, and very rapid changes
were noted at the highest dose, with effects
approaching those of estradiol-17P, the
positive control (74). In these experiments,
Kepone was found to stimulate the female
reproductive system of immature quail, but
decrease follicular development, induce
ovarian regression, and inhibit ovulation
and egg laying in adults (74). With chronic
exposure, eggs laid by treated birds were
significantly weaker and thinner shelled
than those of control birds. Additional
studies by Palmiter and Mulvihill (349)
and Eroschenko and Palmiter (350) indi-
cate that Kepone competes for and binds

to estrogen-sensitive cells in the reproduc-
tive system. Also, messenger RNAs for
conalbumin and ovalbuniin were induced.
Such induction of egg white protein syn-
thesis is also typical of estradiol. Kepone
also affects male birds, causing highly
dilated seminiferous tubules, a reduction in
germinal epithelium, and reduced numbers
of sperm (74,351).

Fry et al. (29) noted that gulls are
relatively resistant to the eggshell-thinning
effects of organochlorine compounds such
as DDT; however, gulls appear to be much
more sensitive to the teratogenic (specifi-
cally, the feminizing) effects of chemicals
identified as having estrogenic properties
(e.g., DDT and methoxychlor). Indeed,
gulls appear to be 10 to 50 times more sen-
sitive to chemicals inducing feminization
than chickens, Japanese quail, or finches,
other species that have been tested using
estrogenic teratogens (29). These pollutant
effects may be the cause of locally observed
population declines and skewed sex ratios
of breeding populations of Western gulls in
California and Herring gulls in the Great
Lakes in the 1960s and 1970s (29). In
examining this hypothesis, Fry et al. (29)
injected the eggs of Western and California
gulls with estrogenic compounds (o,p'-
DDT, p,p'-DDT, and methoxychlor) at
concentrations (2, 5, 20, 50, and 100 pg/g
[ppm] fresh egg wt) that would simulate
levels that have been observed in eggs in the
environment. The positive control com-
pound, estradiol, injected even at the lowest
concentration (0.5 ppm) caused complete
feminization of male embryos such that
male embryos could only be distinguished
histologically by the presence of seminifer-
ous tubules in the left ovotestis. o,p'-DDT
at 5 ppm and higher and methoxychlor at
high concentrations (20, 50, and 100 ppm)
also caused extensive feminization (e.g.,
persistence of right oviducts in female
embryos, left or left and right oviducts pre-
sent in males, and right testes of feminized
males either normal or reduced in size). A
4:1 mixture of p,p'-DDE plus p,p'-DDT
also resulted in feminization of male and
female embryos at the high dose of 50 ppm.
Embryos from eggs injected with p,p'-DDT
or p,p'-DDE alone were not noticeably
affected at the doses tested. It should be
mentioned again that the above studies
treated p,p'-DDE as an estrogen when it
has recently been shown to be a potent AR
antagonist (50,51).

In addition, Fry et al. (29) examined
several colonies of Glaucus-winged gulls
(Larus glaucescens) breeding in localized

polluted areas of Puget Sound, Washington.
Average eggshell thinning was 8, 9, and
10%, respectively, in the three target sites of
Seattle, Tacoma, and Shelton. This is a
remarkable amount of thinning for a gull
species and, as Fry et al. (29) noted, is com-
parable to thinning caused by high levels of
DDT in Lake Michigan in the 1960s. A sig-
nificant percentage of birds (50, 86, and
100%, respectively) from these three sites
also had persistent right oviducts, evidence
of exposure to an estrogenic substance, and
also a high frequency of supernormal
dutches of eggs. Interestingly, Puget Sound,
historically, has not been characterized by
extensive amounts of pollution by DDT,
unlike other areas where the above-observed
effects have been noted. However, high lev-
els of PCBs and PAHs-both classes of
compounds that also are considered to be
environmental endocrine disruptors (this
paper) are characteristic pollutants in
Puget Sound, and birds from urban areas of
the sound have been found with compara-
tively high levels of these compounds in
their tissues (29). Fry et al. (29) concluded
that because only very low levels of DDE
have ever been found in Puget Sound, the
specific cause of the observed eggshell thin-
ning and feminization of Glaucus-winged
gulls in this area is unknown.

Moccia et al. (297) did histologic
examinations of 213 herring gulls collected
from nine colonies in the Great Lakes
basin between 1974 and 1983 and also of
birds from a single colony in the Bay of
Fundy (a coastal marine population)
between 1977 and 1982. Abnormal thy-
roid histology was the rule for gulls from
the Great Lakes area; those from the Bay of
Fundy demonstrated normal thyroid struc-
ture. Epithelial hyperplasia, microfollicular
organization of the thyroid tissue, and
enlarged thyroids (goiter) were prevalent in
gulls from the Great Lakes but not in those
from the Bay of Fundy. Moccia et al.
(297) noted that the Great Lakes region is
deficient in concentrations of iodine in
both soil and water, and iodine deficiency
can cause goiter. Indeed, iodized salt is leg-
islated for use by the human population in
this area. Nonetheless, the spatial and tem-
poral differences in thyroid pathology seen
in the gulls compared with the interlake
differences in iodine content does not,
according to Moccia et al. (297), support a
hypothesis of iodine deficiency as being the
sole cause of the observed thyroid abnor-
malities in the gull populations sampled.

Moccia et al. (297) also noted that a
number of substances present in the Great
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Lakes food chain, including PCBs, PBBs,
DDT, DDD, DDE, dieldrin, and mirex,
reportedly affect thyroid activity in birds. In
this study, the authors found that those
colonies of gulls with the highest prevalence
of epithelial hyperplasia were from those sites
that were most contaminated with PCBs and
PAHs. Furthermore, there has been a tem-
poral decline in the incidence and severity of
abnormal thyroid histopathology that corre-
sponds to a temporal decrease in contami-
nant levels in the gulls. A similar decrease
also has been observed in salmon popula-
tions in the Lakes. Given that the herring
gull diet consists in large part of fish, and
that Great Lakes fish (coho salmon) have
been found to accumulate substances found
to be goitrogenic in rats, Moccia et al. (297)
hypothesized that the agents responsible for
the goiter and thyrotoxic effects observed in
Great Lakes herring gulls are probably some
fishborne polyhalogenated hydrocarbons but
probably not PCBs (which produce an effect
that is histologically different from that
observed in the Great Lakes gulls). Specific
identification of these substances remains to
be accomplished.

MAMMALS. Laboratory evidence of the
effects of estrogenic environmental hor-
mones on sexual differentiation was
demonstrated in a study by Gray (352).
Female hamsters treated neonatally with
0.25, 0.5, or 1 mg/pup of Kepone or 20
pg/kg of estradiol benzoate were masculin-
ized but not defeminized. They had nor-
mal estrous cycles but displayed abnormal
sexual behavior by mounting receptive
females (352).

The linkage of observed effects on wild
mammalian species to environmental
endocrine disruptors is somewhat tenuous,
with perhaps certain populations of marine
mammals providing the most likely exam-
ples of such an association. As in the exam-
ple of herring gulls along the Great Lakes,
the common theme appears to be a diet of
fish contaminated by chemicals that have
demonstrated or suspected influence on
endocrine systems affecting reproduction
and immunocompetence (e.g., PCBs,
DDT, DDE, mirex, mercury). Reijnders
(301) reported on the collapse of a popula-
tion of common seals (Phoca vitulina) in
the westernmost part of the Wadden Sea,
The Netherlands. In 25 years, between
1950 and 1975, the seal population in this
area plummeted from 3000 animals to
fewer than 500. The western (Dutch) area
of the Wadden Sea is heavily polluted by
pollutants carried to this portion of the sea
by the Rhine River. A comparative analysis

of organochlorine chemicals and heavy
metals in the tissues of seals from the west-
ern and northern portions of the Wadden
Sea revealed that only PCB levels were sig-
nificantly higher in the western seal popula-
tion. PCBs are the chemical agents thought
to be the cause of the poor reproduction
observed in the western population.

To investigate this hypothesis, Reijnders
(301) fed two groups of 12 female common
seals fish taken from different areas. Group 1
received fish species caught in the western
part of the Wadden Sea; Group 2 received
fish caught in the Northeast Atlantic.
Analysis of the fish for chemical residues
(aldrin, dieldrin, endrin, heptachlor, hepox,
a4P,y-hexachlorocyclohexane, pentachloro-
benzene, hexachlorobenzene, p,p'-DDE,
o,p'-dichlorodiphenyl-dichloroethane, p,p'-
dichlorodiphenyl-dichloroethane, and PCBs)
showed PCB and p,p'-DDE levels to be sig-
nificandy higher in fish taken from the west-
ern portion of the Wadden Sea than in fish
taken from the Northeast Atlantic. The seals
were fed their respective diets for approxi-
mately 2 years, during which time the aver-
age daily intake of Group 1 seals was 1.5 mg
PCBs and 0.4 mg p,p'-DDE and of Group 2
seals, 0.22 mg PCBs and 0.13 mgp,p'-DDE.
Reproductive success was significantly lower
in Group 1 than in Group 2 seals. Profiles of
hormones from the two seal groups showed
no significant differences in circulating blood
levels of progesterone or estradiol-170
between the two groups on a circumannual
basis. However, the rise in estradiol levels in
nonpregnant seals in Group 2, which indi-
cates follicle growth, was not seen in non-
pregnant seals in Group 1 (although too few
seals [two] were nonpregnant in Group 2 to
test the significance of this result statisti-
cally). Also, the level of elevated estradiol in
the combined Group 1 seals was statistically
lower than that of Group 2 seals but appar-
ently was still high enough to result in repro-
ductive success in some of the animals.

In additional experiments, Reijnders
(301) fed American mink (Mustela vison)
livers of fish from the Wadden Sea or mink
chow dosed with pure PCBs (Clopen A-60
or A-30). Mink were affected equally under
both regimens, with reproductive effects
evident even at very low doses (25 pg/day).
Reijnders (301) concluded that available
evidence indicated that PCBs were the
likely cause of the reproductive failure
observed in the western Wadden Sea seals.
Reijnders (301) further concluded that
effects occur postovulation and perhaps
especially during the period around implan-
tation. However, whether the cause of

reproductive failure is a result of impaired
steroid-binding capacity by PCBs and a dis-
ruption of the steroid synthetic pathways
(endocrine disruption), a dominant-lethal
action, or an embryo lethal effect could not
be determined at the time.

In addition to possible steroidal effects,
Brouwer et al. (353), using the same experi-
mental group as Reijnders (301), found
that the seals fed the diet of Wadden Sea
fish had greatly reduced levels of plasma
retinol concentrations (e.g., 55%, and
30-40% reductions in June 1983 and
September 1983, respectively, the two time
periods selected for sampling and analysis
during the pregnancy period) compared
with seals fed the Northeast Atlantic fish
diet. Plasma triiodothyronine levels were
also significantly reduced in the high-PCB
diet seals compared to the low-PCB diet
seals in the June 1983 sampling. There also
were lesser reductions in plasma total and
free thyroxine at that time. Unlike the
observations on plasma retinol, this relative
diminution in thyroid hormone levels
apparently did not persist throughout preg-
nancy. The September 1983 sampling
showed comparable thyroid hormone levels
in both treatment groups. Brouwer et al.
(353) postulated that PCBs interfere with
thyroid hormone and especially vitamin A
metabolism in these seals. This interference,
over time, could lead to a persistent vitamin
A deficiency, which results in retarded
growth, adverse reproductive effects, skin
and eye disorders, and increased susceptibil-
ity to microbial infections, effects observed
in wild marine mammal populations in the
Baltic, North, and Wadden Seas.

De Guise et al. (252) had similar
findings with a local population of beluga
whales (Delphinapterus leucas) in the St.
Lawrence estuary, Quebec, Canada, that
experienced a population decline from
5000 animals at the turn of the century to
approximately 500 animals as reported in
their study. Like the Wadden Sea seals
studied by Reijnders (301), this population
of whales lives in a highly polluted area and
does not appear to reproduce at a normal
rate. Abnormalities observed in the ovaries
during the reproductive cycle, the presence
of relatively few pregnant animals, and the
unusual occurrence of an adult herma-
phroditic beluga with two ovaries, two
testes, complete male genital tract, and par-
tial female genital tract also were consid-
ered indicative of endocrine-disrupting
effects with a possible chemical etiology.
Thyroid lesions (abscesses and, in one ani-
mal, adenomas) and adrenal cortex lesions
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(hyperplastic nodules and serous cysts) have
also been observed in this population of
whales. De Guise et al. (252) also postu-
lated that exposure to environmental
contaminants (such as PCBs, dieldrin, and
TCDD) may be compromising the immune
system of the St. Lawrence beluga whales
as evidenced by a relatively high prevalence
of neoplasms and observed frequent
infections of mildly pathogenic bacteria in
this population.

Lahvis et al. (354) reported on the mas-
sive stranding and die-offs of bottlenose dol-
phins (Tursiops truncatus) that occurred in
the late 1980s and early 1990s. One such
incident he cited involved more than 740
dolphins from New Jersey to central
Florida, representing as much as 53% of the
coastal migratory stock of this species (355).
Gulf of Mexico dolphins experienced simi-
lar episodes of high or unusual mortality in
the early 1990s, as did striped dolphins
(Stenella coeruleoalba) in the Mediterranean
Sea. Lahvis et al. (354) reported that in each
of these cases the dolphins were marked by
skin and organ lesions believed to be caused
by (in many cases opportunistic) infections
of common bacteria, viruses, and fungi.
Several hypotheses have been proposed con-
cerning the cause of the observed mortali-
ties. In the case of the dolphin deaths in the
Atlantic, the presence of a red tide just prior
to the observed mortalities was noted. In a
red tide, which is produced by the toxic
dinoflagellate alga Ptychodiscus brevis, the
animals would have been exposed to a neu-
rotoxicant, brevetoxin, produced by the
algae. Brevetoxin, it was suggested, could
induce immunosuppression in exposed dol-
phins, making them susceptible to the
observed opportunistic infections. Another
hypothesis was that the Atlantic dolphin
developed a morbilli virus infection, which
also can lead to immunosuppression and
additional (opportunistic) infections.
Neither of these two hypotheses is totally
persuading. Lahvis et al. (354) noted that
not all of the dead dolphins contained
brevetoxin, and morbilli virus infection
could perhaps be secondary to some primary
immunosuppressive event, as appeared to be
the case in the incident involving mortalities
of Mediterranean striped dolphin.

The hypothesis that these animals'
immune systems were suppressed due to
chronic exposure to immunosuppressive
pollutants such as PCBs, pp'-DDT, pp'-
DDE, or TCDD should be considered.
High levels of these toxicants have been
found in the stranded animals. Lahvis et al.
(354) took blood samples from 15 male

bottlenose dolphins from a resident popu-
lation near Sarasota, Florida, in an attempt
to see if a relationship between toxicant
load and immunosuppression could be
determined. Immunosuppression was mea-
sured for each blood sample using lympho-
cyte proliferation assays. Blood samples
also were assayed for concentrations of
polychlorinated dibenzo-p-dioxins, poly-
chlorinated dibenzofurans, PCBs, pesti-
cides, and other chlorinated compounds.
Only 5 of the 15 animals were selected for
analysis, with samples from the high and
low ends being analyzed. This small and
necessarily biased sample plus the lack of
uncontaminated control dolphins make
conclusions of the analysis tentative.
Nonetheless, the investigators found that
immunosuppression as measured by this
assay was positively correlated with increas-
ing levels of pollutants, especially o,p'-
DDE, p,p'-DDE, op'-DDT, and the PCB
congeners assayed. Additional work would
be necessary to confirm and further define
the significance of these results as they
relate to dolphin mortalities.

In Florida panthers (Felis concolor
coryi), cryptorchidism is present in 90% of
the male population (356). Furthermore,
sperm abnormalities for this population are
the highest reported for any feline, and
sterility has been observed in at least four
animals examined from this population
between 1978 and 1990 (356). The cause
of cryptorchidism is unknown, but expo-
sure of developing embryos to endocrine
disruptors is suspected. Another explana-
tion, lack of genetic diversity in this isolated
population, also has been proposed.

Facemire et al. (356), however, while
not discounting that possibility, propose
that exposure to environmental endocrine
disruptors may also account for some and
perhaps even the larger part of the observed
reproductive abnormalities. They base their
conclusions on several observations. First,
the genetic diversity of Florida panthers,
when compared with that of other species
of large cats (e.g., Asian and African lions),
was slightly higher or slightly lower than
average, depending on the specific popula-
tion being compared, and was only slightly
lower to roughly equivalent to that of most
other subpopulations of panthers (e.g.,
those in Texas, although a Latin American
panther population had markedly higher
genetic diversity than the Florida popula-
tion). Second, cryptorchidism is rare in
captive panthers and has never been
reported in any other species of wild feline,
regardless of the degree of inbreeding.

Third, several animals that have been
found dead for unknown reasons or after
failing health have been found to have
what appear to be toxic levels of mercury
in their tissues. Mercury and other conta-
minants, when present in the environment,
can be accumulated from the aquatic food
chain with the upper end of that chain rep-
resented by, in this case, the raccoon,
which feeds on aquatic fish, mollusks, and
crustaceans. Panthers whose diets consist of
large numbers of raccoons will also accu-
mulate high doses of lipophilic compounds
such as mercury and also pp'-DDE and
PCBs, which are suspected endocrine dis-
ruptors, and which also have been found in
Florida panthers and raccoons. Endocrine
disruptors could possibly cause cryp-
torchidism by influencing the synthesis of
anti-Mullerian hormone or the synthesis of
androgens-for example, through an
antiandrogenic effect of DDE. Fourth,
Facemire et al. (356) examined estradiol
and testosterone levels from whole blood
samples from 19 male (6 normal and 13
cryptorchid) and 5 female Florida panthers
and found that there was no significant dif-
ference in estradiol levels among these
three groups, although testosterone levels
were generally greater for males and
increased as the males aged. However,
there were also several males whose estra-
diol/testosterone (E/T) ratio was relatively
high, greater than 1 or near 1, and also a
female panther whose E/T ratio was rela-
tively low, 0.77, indicating possible femi-
nization of the male and masculinization of
the female animals. There were no signifi-
cant differences between the hormone lev-
els of normal and cryptorchid males.
Facemire et al. (356) concluded that addi-
tional studies (e.g., to determine normal
seasonal hormone levels of panthers, to
examine other possible causes of the
observed abnormalities such as vitamin A
deficiency, which has been associated with
a raccoon diet) should be conducted to fur-
ther elucidate the observed reproductive
failure of this population of panthers.

In an unusual report of endocrine
disruption in mammals that possibly
deserves additional follow-up studies,
Cattet (357) reported that 4 of 15 female
black bears and 1 of 4 female brown bears
in Alberta, Canada, had male sex organs,
formed to a greater or lesser extent. Upon
gross dissection, the bears' reproductive
tract was completely female, but exter-
nally some degree of masculinization of
the genitalia was evident. This ranged
from "a small piece of cartilage embedded
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in a muscular process attached to the ven-
tral wall of the vaginal canal to a nearly
full-sized penislike structure with a ure-
thra and baculum" (357). The author
reported no evidence for what might be
the cause of this observed masculinization
but suggested that these effects might be
due to exposure of the developing fetus to
androgen-mimetic chemicals. Another
possibility suggested by Cattet (357) for
the observed pseudohermaphroditism was
a freemartin type phenomenon (an inter-
sexual female calf twin born with a male),
as is seen in cattle when the blood supply
of male and female twin calves are com-
mingled. However, a freemartin phen-
omenon was considered less likely
because the bears examined had evidence
of prior reproduction (placental scars, lac-
tation, and cubs), whereas freemartins are
usually sterile.

Test Methods. Ecological effects
observed and suspected of being caused by
environmental endocrine disruptors are
listed in Table 4. For these effects and oth-
ers discussed in the above paragraphs, even
though an endocrine-disrupting etiology
seems clear in several of these, it can still be
disputed to some degree for all. What is
not disputed is that a true cause-and-effect
relationship is difficult to establish.
A variety of test methods are available,

but it is not known which one(s) is the best
to determine the effects of endocrine-
disrupting chemicals on fish and wildlife. It
is beyond the scope of this review to list
and discuss various tests for each hormone
and process, but consider just one class of
hormones-estrogens, for example. Several

in vitro bioassays have been developed for
assessing the estrogenicity of chemicals
using human breast estrogen-sensitive
MCF-7-cells (67,68,244). The assays com-
pare the cell yield after 6 days of culture in
medium plus 10% charcoal-dextran
stripped human serum with and without
estradiol and chemicals suspected of being
environmental estrogenic agents.

Many tests have been conducted to
determine the endocrine action and
potency of environmental chemicals by
using developmental or physiologic effects
as end points. Developmental effects are
those that affect the developing organism
and may result in irreversible changes.
Physiological effects are those that occur
any time after development and may be
reversible. For example, Gellert and Wilson
(75) have demonstrated that the offspring
of Kepone-treated dams exhibit persistent
vaginal estrus and anovulation. Eroschenko
(74) also reported that administration of
Kepone to pregnant rats or mice during the
main period of fetal organogenesis results
in fetal toxicities and malformations in the
offspring. As another example, a study by
Gray et al. (76) measured reproductive
alterations in rats by age at vaginal open-
ing, first estrus, and preputial separation in
males being dosed with methoxychlor at
25, 50, 100, or 200 mg/kg/day from wean-
ing through puberty, gestation to postnatal
day 15. Methoxychlor accelerates the age at
vaginal opening and first estrus. In the
highest dosed group, females go from
constant estrus into pseudopregnancy
following mating, but do not implant. In
males, methoxychlor treatment reduces

Table 4. Organisms, possible chemical(s) exposure, and types of effects.

Organism Chemical(s)a Type of effect

Salmon PCBs, dioxins, organochlorine pesticides Abnormal thyroid function
Herring gulls PCBs, dioxins, organochlorine pesticides Abnormal thyroid function
Western gulls DDT and DDE Feminization
Marine snails TBT Masculinization
Mosquito fish Pulp mill effluent Masculinization
Grizzly and black bears Unknownb Masculinization
Rainbow trout Sewage effluent Feminization
Alligators Organochlorine pesticides Demasculinization
Panthers Mercury, DDE, PCBs Demasculinization
Suckers Pulp mill effluent Defeminization and

decreased fertility
Atlantic croakers Lead, cadmium, benzo[alpyrene, and PCBs Defeminization
Bald eagles DDT and DDE Decreased hatchability
Forster's terns TCDD, PCDD, and PCBs Decreased hatchability
Wood ducks TCDD and TCDF Decreased hatchability
Cardinals, mockingbirds, Various pesticides Decreased hatchability
and thrashers

Snapping turtles PCBs, dioxins, and furans Decreased hatchability
Sheep Phytoestrogens Decreased fertility
aChemical(s) to which organisms were exposed. bChemical(s) were not mentioned in the literature cited.

growth, seminal vesicle weight, caudal epi-
didymal weight, caudal sperm count, and
pituitary weight.

Vitellogenin, the relevance of which in
fish has already been discussed, provides an
example of a biomarker that may be deter-
mined to be useful in assessing endocrine,
especially estrogenic or other feminization,
effects. A vitellogenin assay is available that
Pelissero et al. (323) improved by develop-
ing a procedure to isolate rainbow trout
hepatocytes, treat the cells with a suspected
estrogen, and then measure the vitellogenin
that is secreted into the culture medium.
Jobling and Sumpter (275) used this in
vitro bioassay to evaluate the estrogenic
activities of alkylphenol ethoxylates and
their breakdown products. Their results are
summarized in Table 3.

The vitellogenin assay and the MCF-7
cell assay (68) are methods that can be
used to screen for estrogenic activity. The
results of these assays have actual implica-
tions for animals. For instance, nonylphe-
nol has been shown to reduce testicular
development in fish and also had a posi-
tive response in both assays. Similarly,
octylphenol and its ethoxylates and benzyl
butyl phthalate were estrogenic in the
vitellogenin assay and both were found to
reduce testicular size and sperm produc-
tion in the offspring of female rats
exposed to the substances via drinking
water (152). Screening assays are not lim-
ited to breast cell cultures or hepatocytes.
Routledge and Sumpter (358) have devel-
oped an estrogen assay using the yeast
Saccharomyces cerevisae to screen for estro-
gens, and this assay has been used to assess
rivers in the United Kingdom for the
presence of estrogenic compounds. The
next challenging step will be to modify
existing test methods or to develop new
ones to further evaluate the results of
bioassays or other screening methods. For
practical and cost reasons, tests will have
to be developed in a tiered fashion. A
consensus-building approach will be
needed, and this area will be the subject
of intense activity for some years to come.
Furthermore, other endocrine disruption
effects, in addition to estrogen or andro-
gen mimics, will have to be evaluated as
more information becomes available.

Development and use of tests targeting
endocrine function could assist risk asses-
sors in determining whether a particular
agent is an endocrine disruptor and its toxi-
cological significance. Tests may vary as the
creative minds of their developers and be as
numerous as there are hormones and
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hormone-controlled processes. Of imme-
diate need, however, is an array of test
methods utilizing in vitro, whole animal,
and field-level approaches for identifying,
quantifying, and elucidating endocrine-
related toxicological effects. A framework
establishing the more useful of available
methods and for linking or tiering these
approaches for a coordinated assessment of
potential endocrine effects is also essential
for prudent regulatory intervention. The
U.S. EPA has established a federal advisory
working group called the Endocrine
Disruptor Screening and Testing Advisory
Committee to develop a screening and test-
ing strategy for new and existing chemicals
that may act as endocrine disruptors. This
Committee is composed of representatives
from environmental groups, industry,
academia, and government.

Analysis, Discussion, and
Recommendations
Human Health Issues
With few exceptions (e.g., DES, dioxin,
DDT/DDE), a causal relationship has not
been established between exposure to a
specific environmental agent and an
adverse effect on human health operating
via an endocrine disruption mechanism.
An important consideration in evaluating
endocrine-disrupting mechanisms is the
concept of negative feedback control of
hormone concentrations. Endogenous
secretion and elimination of hormones are
highly regulated, and mechanisms for con-
trolling modest fluctuations of hormones
are in place. Therefore, minor increases of
exogenous hormones following dietary
absorption and hepatic detoxification of
these xenobiotics may be inconsequential
in disrupting endocrine homeostasis in the
adult. Whether the fetus and the young are
capable of regulating minor changes to the
endocrine milieu is uncertain.

An essential question in the analysis
and discussion of the issue of environmen-
tal hormone disruption for risk assessment
is whether the exposure and endocrine
potency levels of the agents are sufficient to
adversely affect human populations. If
endocrine disruption is occurring through
a hormone receptor mechanism, low ambi-
ent concentrations along with low-affinity
binding of purported xenobiotics are prob-
ably insufficient to activate an adverse
response. For example, exposure concentra-
tions of weak estrogenic alkylphenols are
on the order of ppm to ppb. White et al.
(48) reported effluent concentrations from

sewage discharge plants in the United
Kingdom at 0.1 ppm. Approximately
1/100 of the total (bound plus free) serum
estradiol available is free to activate a
physiologic response in female rats (64).
According to White et al. (48), of the
alkylphenols tested, it requires some 1000
to 10,000 times more of the weak estrogen
than estradiol to bind 50% of the estrogen
receptor. If these data are correct, it means
that 100,000 to 1,000,000 times more of
the agent is needed to activate a physiologi-
cal response. In other words, there would
have to be 100 to 1000 times more of the
agent in the water to activate an estrogenic
response. Clearly, the normal human
female is able to regulate parts per billion
concentrations of estradiol without diffi-
culty. In addition, Safe (56) points out
that dietary exposure to xenoestrogens
derived from industrial chemicals is mini-
mal compared with estrogen equivalents
from naturally occurring bioflavonoids.
Furthermore, in the case of environmental
estrogens as endocrine disruptors, it is
known that competition for binding sites
by antiestrogens and downregulation of
estrogen receptors via Ah receptor-medi-
ated chemicals in the environment may
mitigate estrogenic effects of some chemi-
cals (55). Taken together, the technical
panel concludes, based on the available evi-
dence, that exposure to a single xenoestro-
genic chemical at current environmental
concentrations is probably insufficient to
evoke an adverse effect in adults. More
information is needed to determine
whether this holds for the human fetus and
the neonate. Also, whether additional
chemicals may overcome a body burden or
operate at nonestrogenic receptor sites to
stimulate or inhibit estrogenic or other
responses needs to be determined.

Another unknown of relevancy is
whether a mixture of chemicals with
endocrine-disrupting potential [via
additivity (317,359) or synergy (360)1] is
sufficient to elicit a response and whether
antagonists within the same mixture are
sufficient to negate the response (362).
These uncertainties will require considerable
exploration.

Another issue is whether existing guide-
lines and testing protocols are adequate to
detect endocrine-mediated effects of a dis-
ruptor in the general population as well as
in sensitive individuals (the fetus, children,
the infirm, and elderly). Clearly, there are

'Retracted by the authors (361).

age-dependent differences in susceptibility
to endocrine disruptors. In adult ovari-
ectomized C57BL/Tw mice, three daily
doses of 100 pg of clomiphene, tamoxifen,
or nafoxidine or 1 pg of estradiol but not
keoxifene increases uterine and vaginal
weight, DNA, and protein (363). In con-
trast, neonatal mice given five daily doses
of the antiestrogen keoxifene exhibited
decreased uterine and vaginal weights at 60
days of age. Similarly, while TCDD can
inhibit certain estrogenic effects in adults,
weanling Sprague-Dawley female rats are
apparently insensitive to the antiestrogenic
effects of TCDD (364). No test guide-
lines/protocols exist to specifically evaluate
endocrine disruption effects.

For human health risk assessment
two-generation reproduction studies, the
new U.S. EPA harmonized reproductive
and developmental toxicity testing guide-
lines and the 2-year cancer bioassay should
be able to detect many adverse effects.
However, these were not designed to iden-
tify mechanisms of action of endocrine
disruption, subtle functional deficits, or
transplacental carcinogenesis that might
result after exposures at critical stages of
development not currently included in test-
ing protocols. Current tests also are inade-
quate to evaluate endocrine-mediated effects
of mixtures. Some attempt has been made
to expand on this issue under specific end
points discussed previously. It should be
remembered, however, that first-tier toxicity
testing protocols are not designed to deter-
mine specific end points or mechanism of
action but are apical in design. As such, they
employ a paradigm intended to detect a
broad spectrum of end points and adverse
effects in the overall reproductive process.

With respect to risk assessment, it
should be kept in mind that all of the data
should be considered in the evaluation. For
example, in the case of evaluating estrogen-
mimetic, natural, and synthetic chemical
influences in the development of hypothal-
amic centers and sex differentiation of the
fetus, the following questions might be
asked: What is the role of natural products
such as the phytoestrogens in the diet of
mothers? Are the adverse effects observed
the result of additive, synergistic, or antago-
nistic mechanisms of action? In adults, do
the phytoestrogens have any protective role
in regulating/restricting estrogen influences
in breast cancer development? For indus-
trial chemicals and pesticides (including
inert ingredients) that are used in the work-
place and home, there is a need to accu-
rately assess exposures posed by their uses.
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Basic issues such as exposure potentials due
to leaching from containers, dermal contact,
and inhalation need to be addressed. To
address these issues, a concerted effort will
be needed from industry and the U.S. EPA
to compile accurate information on how
these chemicals are used.

Ecological Issues
Evidence has been presented that a number
of environmental agents (both synthetic
and natural) have the potential of disrupt-
ing endocrine systems in aquatic life and
wildlife. The problem is characterized by
varied adverse effects on the endocrine sys-
tems of a wide range of species. Effects
observed include abnormal thyroid func-
tion, sex alteration, poor hatching success,
decreased fertility, and reduced growth.

Evidence in the scientific literature is
compelling that the endocrine systems of
certain fish and wildlife have indeed been
disturbed by chemicals that contaminate
their habitats. At present, it is not clear
whether the adverse effects observed at vari-
ous sites are confined to isolated areas or are
representative of more widespread condi-
tions. In many cases, the chemicals identi-
fied are ones that already have been
identified as problem substances due to
their toxicity and persistence (DDT, PCBs,
heavy metals, etc.) and therefore are heavily
regulated or banned from commercial use
in the United States, or the chemicals are
complex mixtures (pulp mill effluents,
Superfund site drainage, etc.) known to be
hazardous and to have deleterious effects in
highly exposed populations. In many of the
cases, however, the evidence lacks specific
cause-and-effect data, and alternative expla-
nations for the observed effects cannot be
completely ruled out. For instance, goiter in
Great Lakes fish has no specific chemical or
mixture of chemicals identified or specific
exposure level quantified that produces the
anomaly. It seems likely that there is a
chemical etiology for the phenomenon
other than low iodine levels in the Great
Lakes, but much more research is needed in
this case and in many others as well.

It is significant that these chemicals that
affect fish and wildlife in their natural habi-
tat have been shown to cause similar
adverse effects in laboratory test animals. In
addition, specific chemicals have been
detected in fish and wildlife coincident with
the onset of adverse reproductive effects.

For almost all toxic chemicals, the toxic
action or stress exerted on an organism
likely will be moderated by endocrine and
immune processes that exist to maintain

homeostasis. For this reason it is difficult to
determine whether a toxic action is directed
specifically at an endocrine function or
whether an endocrine process disruption is
an indirect consequence of some other
stress to the immune, nervous, and/or
reproductive system of the organism
affected. This fact may provide an explana-
tion as to why many compounds have been
postulated as endocrine disruptors.

Much attention has been focused
mainly on environmental estrogens (xenoe-
strogens) and their possible adverse effects
to the well-being of humans and other ani-
mals, but it should be kept in mind that
these and other environmental agents may
act at several target sites promoting,
directly or indirectly, endocrine disruption,
disease, and adverse population effects.
Furthermore, it should be kept in mind
that certain pesticidal agents have been
synthesized to function intentionally as
hormone/growth regulators to control pest
populations. Although it is clear that
exogenous chemicals can interfere with
hormonally mediated processes, the extent
to which exposure to these environmental
chemicals occurs at levels that may cause
endocrine disruption is uncertain. Until
additional laboratory animal, wildlife, and
some human studies provide sufficient evi-
dence for an environmental endocrine dis-
ruption phenomenon, it seems reasonable
to call the endocrine disruption issue a
working hypothesis.

In summary, although the majority of
the effects listed above are of concern,
whether these observations represent
widespread or isolated phenomena and
whether these effects can be attributed to
a specific endocrine disruptor will require
additional research.

Data Gaps and Recommended
Research Needs
The data gaps and research needs on poten-
tial endocrine disruptors summarized below
under specific human health and ecological
research needs support and complement
those presented in much greater detail in
two recent workshops and addressed in the
following documents: Research Needs for
Risk Assessment of the Health and
Environmental Effects of Endocrine
Disruptors: A Report of the US EPA-
Sponsored Workshop, Raleigh, NC, April
10-13, 1995 (1) and Development of
Research Strategy for Assessing the Ecological
Risk ofEndocrine Disruptors, Duluth, MN,
June 13-16, 1995 (2). These two docu-
ments, along with ORD's research strategy

proposal, present needs for research
information that will be useful to the U.S.
EPA in responding appropriately to poten-
tial effects of endocrine-disrupting chemicals
on health and the environment.

In view of the current interest and
concern in environmental endocrine disrup-
tion for human health and ecological well-
being, additional epidemiologic, laboratory
testing, and field studies can be undertaken
to better define the nature and scope of the
potential problem. Epidemiologic studies of
populations environmentally or occupation-
ally exposed may provide insight into the
actual risks posed by chemicals. Both in
vitro and short-term in vivo tests could be
developed and validated in independent lab-
oratories in an effort to elucidate mecha-
nisms. Biomarkers of exposure could be
defined and their concentrations related to
degree of insult (i.e., dose-response assess-
ment). Pharmacokinetics studies would be
helpful for improving risk assessments by
allowing extrapolation between species and
assessing other routes of exposure. Because
of the interrelationship of the endocrine
glands, the potential disruption of either
one could have detrimental effects else-
where. For example, the active metabolite
of vitamin D3, 1,25-dihydroxyvitamin D3,
a hormone, causes a hypercalcemia with
resulting disturbance of the estrous cycle,
corpus luteum dysfunction, reduced
serum progesterone, and uterine function
(365). In other words, disruption of one
endocrine gland function may influence
the functions of other endocrine glands.
Additionally, the endocrine system is
related to the nervous and immune sys-
tems, and disruption of one component
may affect others. Consequently, these
interrelationships could be fertile grounds
for research exploration of environmental
endocrine disruption.

Female Reproductive and Develop-
mental Research. OVARY AND REPRO-
DUCTIVE TRACT. Updated reproductive
and developmental testing guidelines have
been proposed recently that should
improve the U.S. EPA's ability to indi-
rectly assess hormonal disruption and the
effects on laboratory test animals, but there
may be a need for additional tests to evalu-
ate specific chemicals perceived to be
endocrine disruptors.

Indusion in the new guidelines of estrous
cycle evaluation, vaginal opening, and
anogenital distance measurements when
appropriate may provide information on
whether estrogen and androgen receptors
have been affected by a given compound.
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Specific inclusion of ovarian and uterine
weights and the histology on these reproduc-
tive organs also may help to evaluate poten-
tial endocrine-active chemicals. Although all
changes occurring in these organs are not
necessarily specific to endocrine effects, all
changes in these endocrine-sensitive organs
should help indicate when further testing
may be desirable. Measurement of serum
hormone levels in laboratory animals at
appropriate times, if incorporated into
testing guidelines should provide useful
information as to whether an endocrine
disruption mechanism is operating.

Validation of certain experimental
testing assays (both in vitro and in vivo),
developed and used in some research labo-
ratories for use as estrogen assays, would be
a valuable first step in developing more
efficient approaches to determine whether
the potential exists for agents to cause hor-
monal disruption. However, these studies
should not be used as sole determinants of
whether compounds are endocrine disrup-
tors, and special in vivo studies would be
necessary to support the information
obtained from in vitro screening tests or
computer models. Finally, research is
needed to determine the feasibility of such
a tier approach, the type of studies needed,
and the impact that a battery of tests for
endocrine disruption will have on the risk
assessment process.

ENDOMETRIOSIS. There is a need to
develop and validate laboratory animal
endometriosis models for testing chemicals
and xenobiotics with other than rhesus
monkeys. A rat model for endometriosis
has been reported (366). Nude (immuno-
logically compromised) rodents with
human endometrial transplants might pro-
vide an appropriate animal model for testing
potential causative agents of endometriosis.

BREAST CANCER. There are a number of
data gaps in our understanding of mecha-
nisms of mammary gland carcinogenesis.
Traditionally, safety and scaling factors and
mathematical models have been employed
to estimate the risk to humans based on
study results in test animals. Such proce-
dures are based on assumptions that may
not be realistic for predicting human haz-
ard/risk or mechanisms. Therefore, there is
a need to develop and validate biologically
based dose-response test animal-to-human
extrapolation models for studying mecha-
nisms of toxicity and chemical carcinogene-
sis, thus improving human risk assessment.

Because environmental estrogenlike
chemicals have been implicated as possible
contributing factors in the etiology of

human breast cancer, these agents could be
tested in various appropriate animal models.

Male Reproductive Research. Testing
for reproductive toxicity should include
evaluation of both the quantity and quality
of sperm produced. Such measures are
emphasized in both the draft, EPA
Guidelines for Reproductive Toxicity Risk
Assessment and the draft, Two-Generation
Reproductive Toxicity Test Guidelines.
Recent revelations that agents such as estra-
diol and DES as well as the DDT metabo-
lite DDE also have antiandrogenic activity
place significantly increased importance on
that mechanism of action. It is possible
that the effects attributed to estrogenic
activity are due to antiandrogenic activity
instead of or in addition to estrogenic
activity. Therefore, it is important that
testing for endocrine-disrupting potential
of environmental chemicals include the
ability to detect antiandrogenic activity in
addition to estrogenic activity. Testing also
should be able to detect alteration in
androgen receptor function as reflected in
genome expression.

Further extensive research on popula-
tions exposed to DES might allow stratifica-
tion of adverse effects by timing and level of
exposure. Additionally, because retrospec-
tive examinations of existing data are likely
to yield ambiguous results, it is important
that prospective studies of human male
sperm production be conducted. Such
studies should include examination of
trends in testicular cancer and sperm pro-
duction over time and attempt to relate
results to body and target tissue burdens of
chemicals known to have antiandrogenic
and/or estrogenic effects. The need for
information relatively quickly dictates that
existing populations of men be studied. For
the long term, ideally a study would begin
with the pregnancies from which the male
study population was derived. Under those
conditions, evaluation of the other known
or developmentally induced reproductive
system effects also could be done.

Whether herbicide exposure contri-
butes to the increasing incidence of human
adenocarcinoma of the prostate and, if so,
whether the mechanism is through an
endocrine disruption have yet to be con-
firmed. If additional epidemiology studies
support the above finding, then the next
step is to identify specific herbicides that
are causative agents and the mechanisms by
which these carcinogens act. Because an
association between prostate cancer and
herbicide spraying has been suggested,
there is need to determine the most likely

route (oral, inhalation, and/or dermal) of
human exposure. If a dietary risk factor
(increased fat intake) is confirmed, perhaps
an oral route of exposure is most likely. Is a
genotoxic effect operational, or is there an
epigenetic mechanism working? Pertinent
to this discussion, what is the evidence that
a hormonal mechanism is contributing to
the increased incidence of this disease? Are
androgen-mimetic chemicals likely candi-
dates? These and other questions require
further research.

Hypothalamus, Pituitary, and
Thyroid Research. Future efforts should
concentrate on developing improved tests
to identify environmental agents that alter
endocrine function through their action on
the CNS and pituitary. Such tests are
needed to identify any adverse neuroen-
docrine changes that occur in response to
exposure during development and/or in
adulthood. These tests might include direct
measures of the gonadotropins and pro-
lactin, as well as assessment of the func-
tional reproductive end points regulated by
the pituitary hormones. Further informa-
tion is needed to better evaluate the extent
to which normal sex differences in the neu-
roendocrine control of gonadal function
may contribute to gender differences in
response to reproductive toxicants. Because
the CNS may develop tolerance to exposure
to environmental agents, further studies are
needed to evaluate the impact of tolerance
on neuroendocrine/reproductive toxicity
and to determine whether the current tests
will identify this phenomenon.

Clearly, there is a need for protocols
and multiple tests to identify chemicals
that have the potential of disrupting thy-
roid hormone function. In rat studies,
propylthiouracil treatment during develop-
ment impairs CNS function (i.e., hearing)
in adulthood (367). Information on effects
of chemicals in both sexes and the effects
of exposure to the fetus, children, and
adults are necessary. Once these apical tests
are developed and validated, additional
tests to ascertain mechanisms of action
appear feasible. In an effort to extrapolate
test animal to human equivalence, reason-
able dose-response data are needed along
with pharmacokinetics studies.

Ecological Research. Many questions
must be addressed before the overall magni-
tude, extent, and specific causes of this envi-
ronmental concern can be resolved.
Information is needed on what chemicals or
dass of chemicals are considered to be gen-
uine endocrine disruptors. The quantity
(dose) of a chemical necessary to cause an
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adverse effect is important. Next, there is a
need to know whether chemicals suspected
of being endocrine disruptors act in an addi-
tive, synergistic, or antagonistic manner.
Although there are several available tests for
evaluating chemicals for possible unique
endocrine system disruption in some animal
species, it is unclear which one or ones are
the most useful. Apparently there are no
avian reproductive tests to evaluate specific
estrogenic effects in birds. Therefore, it is
important to determine how well current
screening assays predict adverse ecological
effects due to endocrine disruption.

Methods need to be developed and
validated to test for a cause-and-effect and a
dose-response relationship to allow for
sound risk assessment and regulatory deci-
sions to be made. Additional research is
needed to determine whether a chemical or
its metabolites have hormonal activity, and

if so, what mechanism of action is involved;
rank chemicals in relative potency terms of
toxicity; determine whether organisms are
exposed to specific chemicals in the environ-
ment; ascertain whether there are sensitive
species and individuals, and predict effects
in the environment, including effects on
organisms, populations, communities, and
ecosystems. Specifically, test methods are
needed to identify potential endocrine dis-
ruptors, quantify the potency of such action,
and demonstrate any adverse outcome(s).

Sentinel species (organisms used to
detect effects of hazardous exposures) have
been used to identify environmental conta-
minants. Therefore, there is a need to deter-
mine whether current sentinel species are
adequate surrogates for identifying endo-
crine disruptors in wild and aquatic life or if
other sentinel species should be identified
and validated for assessing the state of

ecosystems. Perhaps the development, vali-
dation, and use of amphibian and/or reptil-
ian models would be appropriate in view of
the widespread distribution and lack of
information on these classes of vertebrates.
Evaluations of ecological effect generally do
not consider factors such as disease resis-
tance (immune system dysfunction), behav-
ior (mating disruption), or reproductive
viability of offspring (transgenerational
effects). Consequently, there is a need to
determine whether existing ecological
effects/end points are adequate for assessing
endocrine system perturbation. If not, then
additional effects/end points are needed.

Finally, there is a need to know what
effects that occur at the earliest response
threshold are relevant for further risk char-
acterization and what are the population,
community, or ecosystem consequences of
the effects observed in fish and wildlife.
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